大气与环境光学学报 ›› 2024, Vol. ›› Issue (2): 243-256.doi: 10.3969/j.issn.1673-6141.2024.02.010

• 环境光学监测技术 • 上一篇    

2013―2021年南京热环境时空演化及扩张驱动机制研究

李超男 1,2, 徐雁南 1,2*   

  1. 1 南京林业大学南方现代林业协同创新中心, 江苏 南京 210037; 2 南京林业大学林学院, 江苏 南京 210037
  • 收稿日期:2022-07-12 修回日期:2022-08-09 出版日期:2024-03-28 发布日期:2024-04-18
  • 通讯作者: E-mail: nfuxyn@126.com E-mail:njfu_xyn@126.com
  • 作者简介:李超男 (1998-), 江苏徐州人, 硕士研究生, 主要从事生态环境遥感方面的研究。 E-mail: cnl_nifu@163.com
  • 基金资助:
    江苏省林业科技创新与推广项目 (LYKJ [2021] 14)

Spatio-temporal evolution and expansion driving mechanism of Nanjing thermal environment from 2013 to 2021

LI Chaonan 1,2, XU Yannan 1,2*   

  1. 1 Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; 2 College of Forest, Nanjing Forestry University, Nanjing 210037, China
  • Received:2022-07-12 Revised:2022-08-09 Online:2024-03-28 Published:2024-04-18

摘要: 基于Landsat 8 OLI-TIRS遥感影像, 利用辐射方程算法反演得到南京市地表温度数据。从数量和速度方面揭 示南京市2013―2021 年间热环境景观的时空变化特征, 并进一步利用核密度分析和空间质心迁移轨迹揭示热环境景 观的空间演变特征。此外, 借助PLUS模型探究了2013―2021 年热环境景观的驱动机制。结果表明: (1) 2013―2021 年间中温区景观在研究区占主导地位, 其中2017―2021 年热环境景观变化最强烈, 其综合热环境动态度为23.94%。 (2) 低温区的核密度高值主要位于水域和林地, 北部集聚特征较为明显; 次低温区的核密度分布特征表现为北部和南 部较密集且破碎化明显; 中温区的核密度分布呈“中间少四周多”的格局; 次高温区景观呈多核心增长的趋势; 高温区 景观集聚特征最为显著, 主要分布于长江两岸及各市区的中心地区。(3) 低温区质心迁移速度最快, 整体上向东北方 向移动了21.30 km; 次低温区质心迁移速度由慢到快, 先向西北移动9.52 km, 后向东南移动17.88 km; 高温区、次高温 区、中温区质心整体向西南方向偏移, 移动距离分别为19.99、4.77、4.04 km。(4) 从不同热环境景观扩张的驱动因子来 看, 低温区、次低温区和中温区扩张的驱动力主要是受高程的影响, 次高温区和高温区扩张的驱动力主要是距住宅距 离和距工厂距离。本研究对于加强南京地表热环境的监测和促进城市生态环境可持续发展具有重要的参考意义。

关键词: 热环境, 核密度分析, 空间质心模型, PLUS模型

Abstract: Based on Landsat 8 OLI-TIRS remote sensing imagery, the surface temperature data of Nanjing City, China, was inverted using the radiation equation algorithm, the spatial and temporal variability of the thermal environmental landscape in Nanjing during 2013‒2021 is revealed in terms of quantity and rate, and the spatial evolution of the thermal environmental landscape is further revealed using kernel density analysis and spatial centroid migration trajectories. In addtion the driving mechanisms of the thermal environmental landscape from 2013 to 2021 was explored with the help of the PLUS model. The results indicate that: (1) The mesothermal landscape dominated the study area, from 2013 to 2021, and the strongest change in the thermal environmental landscape from 2017 to 2021, with a comprehensive thermal environmental dynamic degree of 23.94%. (2) During 2013‒2021, the density core of the low temperature zone was mainly located in water and woodland, with more pronounced clustering characteristics in the north. The sub low temperature zone was characterized by a denser and more fragmented distribution in northern and southern regions.The medium temperature zone had a "less in the middle and more around" distribution pattern.The sub high temperature zone landscapes showed a trend of multi-core growth, and the high temperature zone had the most significant landscape clustering characteristics, mainly distruibuted on both sides of the Yangtze River and in the centre of urban areas. (3) Generally, the low temperature zone has the fastest rate of centroid migration with an overall movement of 21.30 km to wards the northeast.The rate of centroid migration of the sub low temperature zone changed from slow to fast, during the period, first moving 9.52 km to the northwest and then 17.881 km to the southeast. The centroids of the high temperature zone, sub high temperature zone and medium temperature zone were shifted to the southwest as a whole, with distance of 19.99, 4.77 and 4.04 km respectively. (4) In terms of the driving factors for the expansion of the different thermal environmental landscapes, the expansion of the low temperature zone, sub low temperature zone and medium temperature zone was mainly driven by the elevation, while the main drivers for the expansion of the sub high temperature zone and the high temperature zone were distance from residential buildings and distance from factories.This study provides an important reference for strengthening the monitoring of Nanjing's surface thermal environment and promoting the sustainable development of the urban ecology.

Key words: thermal environment, kernel density analysis, spatial centroid model, patch-generating land use simulation model

中图分类号: