大气与环境光学学报 ›› 2011, Vol. 6 ›› Issue (3): 163-178.

• 综述 •    下一篇

植被生化组分定量遥感反演研究进展

程丽娟1,孙林1,姚延娟2,沈艳3   

  1. (1山东科技大学测绘科学与工程学院,山东 青岛 266510;
    2 国家环境卫星中心,北京 100083; 
    3 国家气象信息中心,北京 100081)
  • 收稿日期:2010-10-08 修回日期:2010-11-24 出版日期:2011-05-28 发布日期:2011-05-23
  • 通讯作者: 程丽娟(1985—),女,山东济宁人,研究生,从事环境生态定量遥感研究。 E-mail:sunnych3@126.com
  • 作者简介:程丽娟(1985—),女,山东济宁人,研究生,从事环境生态定量遥感研究。
  • 基金资助:

    国家“863”计划项目(2009AA12Z147)、国家科技支撑计划项目(2008BAC34B03)资助

Research Developments on Inversion of Vegetation Biochemistry Compositions by Quantitative Remote Sensing

CHENG Li-juan1, SUN Lin1, YAO Yan-juan2, SHEN Yan3   

  1. (1 Geomatics College, Shandong University of Science and Technology, Qingdao 266510, China; 
    2 National Environmental Satellite Center, Beijing 100094, China; 
    3 National Meteorlogical Information Center, Beijing 100081, China)
  • Received:2010-10-08 Revised:2010-11-24 Published:2011-05-28 Online:2011-05-23

摘要:

植物生化组分的定量遥感研究不仅在生态系统、全球变化、碳、氮循环等科学研究方面具有重要意义,而且在指导农业生产、监测农作物长势和估产、分析农田水肥状况以及植被精细分类和森林火灾预警等诸多方面也具有重要意义。在对国内外相关工作对比分析的基础上,总结了植物生化组分定量遥感研究的发展过程。从经验分析方法、半经验分析方法、物理模型方法三个方面,综述了现阶段植被生化组分的反演方法及进展,重点阐述了各方法的优势与局限,并根据当前卫星遥感的发展趋势指出了植被生化组分反演的发展前景。

关键词: 生化组分, 反演方法, 经验分析, 半经验, 物理模型

Abstract:

The quantitative remote sensing research on vegetation biochemistry compositions is of great significance not only on many scientific research aspects, such as ecosystems, global change, carbon, nitrogen cycle et al, but also has great meaning of guiding agricultural production, monitoring crop growing status and assessment, analyzing the agricultural fertilizer situation, the fine classification of vegetation and early warning of forest fire, et al. Based on the comparative analysis of related work at home and abroad, the development progress of quantitative remote sensing of vegetation biochemistry compositions was summarized. From three aspects of experience analytical methods, semi-empirical analytical methods, physical model approach, the inversion methods and research developments at this stage of vegetation biochemistry compositions were summarized, the strengths and limitations of various methods were clear expatiated, and the development prospects of inversion of vegetation biochemistry compositions were pointed out according to the current development trend of satellite remote sensing.

Key words: biochemistry compositions, inversion methods, experience analytical methods, semi-empirical analytical methods, physical model

中图分类号: