大气与环境光学学报 ›› 2014, Vol. 9 ›› Issue (3): 237-243.

• 自适应光学技术 • 上一篇    下一篇

自适应光学数值仿真成像在GPU上的实现

吴振华1,2+,唐秋艳1,王中杰1,马文静1,龙国平1,李玉成1   

  1. (1 中国科学院软件研究所, 北京 100190; 
    2 中国科学院大学, 北京 100190)
  • 收稿日期:2013-10-29 修回日期:2013-11-20 出版日期:2014-05-28 发布日期:2014-05-21
  • 通讯作者: 吴振华(1989-),男,湖南人,研究生,主要从事并行算法设计与实现的研究. E-mail:wuzhenhua10@gmail.com
  • 作者简介:吴振华(1989-),男,湖南人,研究生,主要从事并行算法设计与实现的研究.
  • 基金资助:

    国家“863”计划基金资助项目(NO. 2012AA010902),国家自然科学基金青年基金项目(61100072),国家自然科学基金青年科学基金项目(61303059)资助

Numerical Simulation of Adaptive Optical Imaging on GPUs

WU Zhen-hua1,2+, TANG Qiu-yan1, WANG Zhong-jie1, MA Wen-jing1,LONG Guo-ping1, LI Yu-cheng1   

  1. (1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China; 
    2 University of Chinese Academy of Sciences, Beijing 100190, China)
  • Received:2013-10-29 Revised:2013-11-20 Published:2014-05-28 Online:2014-05-21

摘要:

在自适应光学(AO)系统中,成像是不可或缺的一部分。AO仿真系统中的探测器和哈特曼-夏克波前传感器的成像过程一般用二维的离散卷积来计算,而通常它的数值算法用快速傅立叶变换(FFT)实现。但是随着矩阵维数的增加,卷积的运算量会急剧增大,成为制约整个AO仿真效率的一个瓶颈。利用图形处理器(GPU)的强大计算能力,可以使成像系统运行速度大幅提高。在NVIDIA Tesla C2050 GPU上,针对不同分辨率的图像,获得了相对于串行程序5-24倍的加速比。

关键词: 自适应光学系统, 成像, 卷积, 快速傅立叶变换, 图形处理器

Abstract:

In the adaptive optics (AO) system, imaging is a very important process. The imaging process of the detectors and Hartman-Shack wavefront sensor in the AO simulation system is calculated with two-dimensional discrete convolution, whose numerical algorithm can be implemented with fast Fourier transformation (FFT). With the increase of the matrix size, the computation of convolution increases dramatically, and becomes a bottleneck of the AO system. To solve the problem, convolution on graphic processing unit(GPU) was implemented, which is a powerful accelerator in modern high performance computers. By applying various optimizations, significant performance improvement is obtained. On the NVIDIA Tesla C2050 GPU, a speedup of 5 to 24 times compared to serial program on the CPU with different image sizes is achieved.

Key words: adaptive optics, imaging, convolution, fast Fourier transformation, graphic processing unit

中图分类号: