大气与环境光学学报 ›› 2017, Vol. 12 ›› Issue (3): 202-209.

• 光学遥感 • 上一篇    下一篇

基于主成分分析的CO2统计反演方法

桑浩,王先华*,叶函函,蒋芸   

  1. (中国科学院通用光学定标与表征技术重点实验室,中国科学院安徽光学精密机械研究所,安徽 合肥,230031)
  • 收稿日期:2016-03-04 修回日期:2016-03-11 出版日期:2017-05-28 发布日期:2017-05-18
  • 通讯作者: 王先华(1963-),男,安徽芜湖人,研究员,主要从事定量化遥感、遥感系统成像质量分析和遥感图像信息提取等方面的研究。 E-mail:xhwang@aiofm.ac.cn
  • 作者简介:桑浩(1989-),男,安徽阜阳人,硕士研究生,主要从事光学遥感方面的研究。
  • 基金资助:

    Supported by the National Natural Science Foundation of China (国家自然科学基金, 41175037), Civil High Satellite Application in Common Projects(民用高分卫星应用共性项目, 32-Y20A17-9001-15/17)

Statistic Retrieval Method of Carbon Dioxide Based on Principal Component Analysis

SANG Hao, WANG Xianhua*, YE Hanhan, JIANG Yun   

  1. (Key Laboratory of Optical Calibration and Characterization,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China)
  • Received:2016-03-04 Revised:2016-03-11 Published:2017-05-28 Online:2017-05-18

摘要:

二氧化碳(CO2)卫星遥感中,大气环境因素是影响反演精度的重要原因,目前反演条件通常限制在气溶胶光学厚度小于0.3的情况。我国大气气溶胶高值情况较为普遍,对大气条件的较高要求将严重影响我国CO2卫星遥感数据的应用能力。针对这种情况,利用基于主成分分析法对中国京津地区高气溶胶光学厚度的大气CO2反演,得到的CO2柱浓度与2013年、2014年GOSAT-Level2产品进行对比分析,均方根误差分别为0.65%和0.46%,相关性分别为0.77和0.93。

关键词: 光学遥感, CO2反演, 主成分分析, 统计反演, 温室气体

Abstract:

In the satellite remote sensing of carbon dioxide (CO2), atmospheric environmental factor is the important factor affecting the inversion accuracy. The inversion conditions is usually limited to the situation of the aerosol optical thickness less than 0.3. The higher requirement of the atmospheric conditions will seriously affect the application ability of our country's CO2 satellite remote sensing data. For this kind of situation, based on principal component analysis (PCA), atmospheric CO2 of Beijing and Tianjin areas of China is inversed of high aerosol optical thickness, the CO2 column concentration obtained is compared with the product of GOSAT - Level2 in 2013, 2014. The root mean square error is 0.65% and 0.46%, respectively, and the correlation is 0.77 and 0.93, respectively.

Key words: optical remote sensing, CO2 retrieval; principal component analysis, statistical retrieval, greenhouse gas

中图分类号: