大气与环境光学学报 ›› 2018, Vol. 13 ›› Issue (4): 285-292.

• 光学遥感 • 上一篇    下一篇

高空间分辨率卫星图像的薄云去除

王晴1,2,崔生成 1,杨世植1   

  1. (1中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室,安徽 合肥230031; 
    2中国科学技术大学研究生院科学岛分院,安徽 合肥230026)
  • 收稿日期:2017-04-21 修回日期:2017-06-01 出版日期:2018-07-28 发布日期:2018-07-10
  • 通讯作者: 王晴(1992-),女,硕士,主要从事光学遥感技术方面的研究. E-mail:18715103609@163.com
  • 作者简介:王晴(1992-),女,硕士,主要从事光学遥感技术方面的研究.
  • 基金资助:

    Supported by National Nature Science Foundation of China(国家自然科学基金, 41305019)

Thin Cloud Removal for High Spatial Resolution Satellite Images

WANG Qing1,2, CUI Shengcheng1, YANG Shizhi1   

  1. (1 Key Laboratory of Atmospheric Composition and Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 
    2 University of Science and Technology of China, Hefei 230026, China)
  • Received:2017-04-21 Revised:2017-06-01 Published:2018-07-28 Online:2018-07-10
  • Contact: 王晴(1992-),女,硕士,主要从事光学遥感技术方面的研究. E-mail:18715103609@163.com
  • About author:王晴(1992-),女,硕士,主要从事光学遥感技术方面的研究.
  • Supported by:

    Supported by National Nature Science Foundation of China(国家自然科学基金, 41305019)

摘要:

为了有效地去除高分辨卫星图像中薄云的影响,提出了一种基于Mallat小波变换的薄云去除方法。对图像进行Mallat小波分解得到高频细节部分和低频近似部分,根据云噪声在分解系数中处于低频部分而地物信息占据相对高频部分的特点,在小波变换多尺度分析的基础上,算法在最大尺度低频图像上按照云厚度掩膜值对云区进行线性处理;对于高频子带图像根据尺度的不同运用非线性增强算子进行不同程度的增强,从而提高图像的清晰度,减小残留云的影响,之后将重构后的图像进行中值滤波以减少高频云的影响。针对高分一号卫星图像进行了实验。实验证明,该方法在去除薄云的同时很好地保留了图像细节及边缘信息,去薄云效果优于传统小波变换法。

关键词: 卫星图像, 薄云, Mallat算法, 多尺度分析, 非线性增强, 中值滤波

Abstract:

In order to remove the influence of thin cloud on satellite image effectively, an algorithm based on Mallat wavelet transform is proposed. It’s it possible to decompose the image into high frequency detail and low frequency approximation components. Based on the facts that cloud noise occupies lower frequency part in the distribution characteristics while scenery information make up the relative high part, this kind of algorithm processes cloudy zones by using linear methods according to cloud thickness in the largest scale of low frequency sub-band image. Different scales of high frequency sub-band is enhanced by non-linear enhancing operators in order to improve images’ sharpness and reduce the impact of residual cloud. Later median filtering is added to process the reconstruct image to reduce the influence of high frequency mutation cloud. The algorithm is utilized to process GF-1 images. Experiment shows that this kind of algorithm can remove thin cloud while it can also preserve image details and edges the same time, which indicates it is better than traditional wavelet transform method.

Key words: satellite image, thin cloud; Mallat algorithm, multi-scale analysis, non-linear enhancement, median filtering

中图分类号: