大气与环境光学学报 ›› 2018, Vol. 13 ›› Issue (5): 355-363.
张杨1,文辉1,林晓晓1,陈娇2
出版日期:
2018-09-28
发布日期:
2018-09-28
作者简介:
张杨(1986-),女,安徽黄山人,硕士研究生,工程师,主要从事大气物理化学研究,
基金资助:
Supported by National Natural Science Foundation of China (国家自然科学基金,41505114, 41775122, 40605102)
ZHANG Yang1, WEN Hui1, LIN Xiaoxiao1, CHEN Jiao2
Published:
2018-09-28
Online:
2018-09-28
Supported by:
Supported by National Natural Science Foundation of China (国家自然科学基金,41505114, 41775122, 40605102)
摘要:
大气中有机成分种类繁多,结构复杂,有机酸作为大气环境各相中含量最丰富的有机物种之一备受关注,最近的实验研究表明,部分芳香族有机酸能够促进硫酸-水团簇的成核及生长。理论计算也表明在有机酸的存在下,一些小分子有机酸与硫酸通过氢键的相互作用形成非均相的团簇降低了成核壁垒,从而促进团簇的形成,对新粒子的成核产生具有重要促进作用。鉴于有机酸对大气气溶胶成核机理研究具有重要的意义,文中对其近些年在实验和理论上的进展进行了回顾,并对未来前景作了展望。
中图分类号:
张杨 文辉 林晓晓 陈娇. 有机酸促进大气气溶胶成核机理研究进展[J]. 大气与环境光学学报, 2018, 13(5): 355-363.
ZHANG Yang, WEN Hui, LIN Xiao-Xiao, CHEN Jiao. Study of Atmospheric Aerosol Nucleation Mechanism by Organic Acid[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 355-363.
[1] Whitby K T. The physical characteristics of sulfur aerosols [J]. Atmospheric Environment(1967), 1978, 12(1): 135-159. [2] Hussein T, Maso M D, Petaja T, et al. Evaluation of an automatic algorithm for fitting the particle number size distributions [J]. Boreal Environment Research, 2005, 10(5): 337-355. [3] Merikanto J, Spracklen D V, Mann G W, et al. Impact of nucleation on global CCN [J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8601-8616. [4] Yu F, Wang Z, Luo G, et al. Ion-mediated nucleation as an important global source of tropospheric aerosols [J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2537-2554. [5] Leaitch W R, Bottenheim J W, Biesenthal T A, et al. A case study of gas-to-particle conversion in an eastern canadian forest [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8095-8111. [6] O'Dowd C, McFiggans G, Creasey D, et al. On the photochemical production of new particles in the coastal boundary layer [J]. Geophysical Research Letters, 1999, 26(12): 1707-1710. [7] Schillawski R D, Baumgardner D. A study of new particle formation and growth involving biogenic [J]. Journal of Geophysical Research, 1998, 103(D13): 16385-16396. [8] Holmes N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications [J]. Atmospheric Environment, 2007, 41(10): 2183-2201. [9] Solomon S, Qin D, Manning M, et al. IPCC, Climate Change 2007: The Physical Scientific Basis [M]. New York: Cambridge University Press, 2007. [10] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical Reviews, 2012, 112(3): 1957-2011. [11] Weber R J, McMurry P H, Mauldin R L, et al. New particle formation in the remote troposphere: A comparison of observations at various sites [J]. Geophysical Research Letters, 1999, 26(3): 307-310. [12] Napari I, Kulmala M, Vehkamäki H. Ternary nucleation of inorganic acids, ammonia, and water [J]. The Journal of Chemical Physics, 2002, 117(18): 8418-8425. [13] Yu F Q, Turco R. Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms [J]. Atmospheric Chemistry and Physics, 2008, 8: 6085-6102. [14] Vuollekoski H, Kerminen V–M, Anttila T, et al. Iodine dioxide nucleation simulations in coastal and remote marine environments [J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2): D02206. [15] Kulmala M, Kerminen, V M. On the formation and growth of atmospheric nanoparticles [J]. Atmospheric Research, 2008, 90(2-4): 132-150. [16] Smith J N, Dunn M J, VanReken T M, et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth [J]. Geophysical Research Letters, 2008, 35(4): L04808. [17] Fiedler V, Dal Maso M, Boy M, et al. The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe [J]. Atmospheric Chemistry and Physics, 2005, 5(7): 1773-1785. [18] Boy M, Rannik U, Lehtinen K E J, et al. Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics [J]. Journal of Geophysical Research, 2003, 108(D21): 4667. [19] Nozière B, Kalberer M, Claeys M, et al. The Molecular identification of organic compouds in the atomsphere: State of the Art and Challenges [J]. Chemical Reviews, 2015, 115(10): 3919-3983. [20] Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review [J]. Atmospheric Environment, 1996, 30(24): 4233-4249. [21] Souza S R, Vasconcellos P C, Carvalho L R F. Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil[J]. Atmospheric Environment,1999, 33(16):2563-2574 [22] Gasparini R, Li R, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol [J]. Atmospheric Environment, 2004, 38(20): 3285-3303. [23] Fan J, Zhang R. Atmospheric oxidation mechanism of isoprene [J]. Environmental Chemistry, 2004, 1(3): 140-149. [24] Zhang R. Getting to the critical nucleus of aerosol formation [J]. Science, 2010, 328(5984): 1366-1367. [25] Yi T, Li H, Weng T, et al. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography [J]. Analytica Chimica Acta, 2008, 626(1): 78-88. [26] Pio C A, Silva P A, Cerqueira M A, et al. Diurnal and seasonal emissions of volatile organic compounds from cork oak(Quercus suber) trees [J]. Atomspheric Enviroment, 2005, 39(10): 1817-1827. [27] Forstner H J L, Flagan R C, Seinfeld J H. Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition [J]. Environmental Science and Technology, 1997, 31(5): 1345-1358. [28] Jang M S, Kamens R M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene [J]. Environmental Science and Technology, 2001, 35(18): 3626-3639. [29] O’Dowd C D, Aalto P, Hameri K, et al. Aerosol formation: Atmospheric particles from organic vapours [J]. Nature, 2002, 416(6880): 497-498. [30] Kavouras I G, Mihalopoulos N, Stephanou E G. Formation of atmospheric particles from organic acids produced by forests [J]. Nature, 1998, 395: 683-686. [31] Ehn M, Junninen H, Petäjä T, et al. Composition and temporal behavior of ambient ions in the boreal forest [J]. Atmospheric Chemistry and Physics, 2010, 10(17): 8513-8530. [32] Junninen H, Ehn M, Petäjä T, et al. A high-resolution mass spectrometer to measure atmospheric ion composition [J]. Atmospheric.Measurement Techniques, 2010, 3(4): 1039-1053. [33] Jordan A, Haidacher S, Hanel G, et al, A high resolution and high sensitivity proton-transfer-reactiontime-of-flight mass spectrometer (PTR-TOF-MS) [J]. International Journal of Mass Spectrometry, 2009, 286 (2): 122-128. [34] Vanhanen J, Mikkilä J, Lehtipalo K, et al. Particle size magnifier for nano-CN detection [J]. Aerosol Science and Technology, 2011, 45(4): 533-542. [35] Kulmala M, Riipinen I, Sipila M, et al. Toward direct measurement of atmospheric nucleation [J]. Science, 2007, 318(5847): 89-92. [36] Wang S C, Flagan R C. Scanning electrical mobility spectrometer [J]. Aerosol Science and Technology, 1990, 13(2): 230-240. [37] Yue D L, Hu M, Wu Z J, et al. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2): 1159-1171. [38] Yue D L, Hu M, Zhang R Y, et al. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing [J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4953-4960. [39] Zhang R Y, Suh I, Zhao J. et al. Atmospheric new particle formation enhanced by organic acids [J]. Science, 2004, 304(5676): 1487-1490. [40] Zhang R Y, Wang L, Khalizov A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution [J]. Proceedings of the National Academy of Science of the United States of America, 2009, 106(42): 17650-17654. [41] Hoffmann T, Bandur R, Marggraf U, et al. Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes [J]. Journal of Geophysical Research, 1998, 103(D19): 25569-25578. [42] Zhao J, Khalizov A, Zhang R, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689. [43] Nadykto A B, Yu F Q, Strong hydrogen bonding between atmospheric nucleation precursors and common organics [J]. Chemical Physics Letters, 2007, 435(1): 14-18. [44] McGraw R, Wu D T. Kinetic extensions of the nucleation theorem [J]. The Journal of Chemical Physics, 2003, 118(20): 9337-9347. [45] McGraw R, Zhang R Y. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system [J]. The Journal of Chemical Physics, 2008, 128(6): 064508. [46] Wang L, Khalizov A F, Zheng J, et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics [J]. Nature Geoscience, 2010, 3(4): 238-242. [47] Nadykto A B, Yu F, Strong hydrogen bonding between atmospheric nucleation precursors and common organics [J]. Chemical Physics Letters, 2007, 435(1): 14-18. [48] Nadykto A B, Du H, Yu F, Quantum DFT and DF-DFT study of vibrational spectra of sulfuric acid, sulfuric acid monohydrate, formic acid and its cyclic dimer [J]. Vibrational Spectroscopy, 2007, 44(2): 286-296. [49] Xu Y, Nadykto A B, Yu F, et al, Formation and properties of hydrogen-bonded complexes of common organic oxalic acid with atmospheric nucleation precursors [J]. Journal of Molecular Structure: THEOCHEM, 2010, 951(1): 28-33. [50] Xu Y, Nadykto A B, Yu F, et al. Interaction between common organic acids and trace nucleation species in the Earth’s Atmosphere [J]. The Journal of Physical Chemistry A, 2010, 114(1): 387-396. [51] Fan J W, Zhang R Y, Collins D, et al. Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas [J]. Geophysical Research Letters, 2006, 33(15): L15802. [52] Kurtén T, Sundberg M R, Vehkamaki H, et al. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate [J]. Journal of Physical Chemistry A, 2006, 110(22): 7178-7188. [53] Xu W, Zhang R Y. Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2012, 116(18): 4539-4550. [54] Xu W, Zhang R Y. A theoretical study of hydrated molecular clusters of amines and dicarboxylic acids [J]. The Journal of Chemical Physics, 2013, 139(6): 53-58. [55] Zhu Y P, Liu Y R, Huang T, et al. Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid [J]. The Journal of Physical Chemistry A, 2014, 118(36): 7959–7974. |
[1] | 董鉴韬, 李正强, 谢一凇, 樊程, 洪津, 戴刘新, 顾浩然, 郑杨 . 基于GF-5(02) 卫星DPC数据的2022年春季陆表细粒子气溶胶光学厚度空间分布[J]. 大气与环境光学学报, 2023, 18(4): 323-338. |
[2] | 翟颖超, 王涵, 赵梅如, 陈科, 李林森 . 山区气溶胶多角度偏振遥感地气解耦方法评估[J]. 大气与环境光学学报, 2023, 18(4): 339-356. |
[3] | 顾浩然, 李正强, 侯伟真, 裘桢炜, 刘振海, 朱军, 伽丽丽, 罗杰, 洪津, 麻金继 . 紫外多角度偏振探测气溶胶层高的信息量分析初步研究[J]. 大气与环境光学学报, 2023, 18(4): 357-370. |
[4] | 孙二昌, 麻金继, 吴文涵, 杨光, 郭金雨, . Himawari-8气溶胶变分同化对PM2.5污染模拟的改进[J]. 大气与环境光学学报, 2023, 18(1): 59-72. |
[5] | 汪惜今, 徐青山, 范传宇, 程晨, 戚鹏, 徐赤东 . 激光雷达探测整层大气昼夜气溶胶光学厚度[J]. 大气与环境光学学报, 2023, 18(1): 14-24. |
[6] | 黄冬, 李新, 张艳娜, 张允祥 . 全自动太阳光度计温控系统设计及测试[J]. 大气与环境光学学报, 2023, 18(1): 73-81. |
[7] | 许健, 饶兰兰, DOICU Adrian, 胡斯勒图∗, 秦凯∗. 基于氧气A 带的高光谱卫星气溶胶层高优化反演[J]. 大气与环境光学学报, 2022, 17(6): 630-639. |
[8] | 王雪林, 陈文忠∗. 亚北极太平洋气溶胶光学厚度与净初级生产力的变化特征及其相关性研究[J]. 大气与环境光学学报, 2022, 17(5): 558-569. |
[9] | 陈玉宽, 王 朔, 徐学哲, 赵卫雄, 盖艳波, 方 波, 张为俊, ∗. 安徽省寿县气溶胶消光系数变化特征分析[J]. 大气与环境光学学报, 2022, 17(5): 533-541. |
[10] | 蔡振锋, 李 丁∗, 黄海虹. 2021 年春季沙尘传输对徐州地区气溶胶演变影响分析[J]. 大气与环境光学学报, 2022, 17(4): 409-419. |
[11] | 程璐璐, 施文杰, 夏 果∗, 王江涛, 陈巧芹, 金施群. 偏振氧A 带光谱气溶胶垂直剖面反演的信息量分析和灵敏度研究[J]. 大气与环境光学学报, 2022, 17(3): 360-368. |
[12] | 陈 标, 吴 东, ∗. 基于CALIOP 和MODIS 的北极地区海雾检测研究[J]. 大气与环境光学学报, 2022, 17(2): 267-278. |
[13] | 赵 锋, 冯亚娟∗. 2-甲基甘油酸-硫酸/甲磺酸团簇的大气物化特性研究[J]. 大气与环境光学学报, 2022, 17(2): 213-219. |
[14] | 姜晓彤, 杜 林∗. 环境因素影响二次有机气溶胶生成的研究进展[J]. 大气与环境光学学报, 2022, 17(1): 3-15. |
[15] | 项 往, 王炜罡, ∗, 张文玉, 葛茂发, ∗, 李 坤. 二次有机气溶胶光学特性研究进展[J]. 大气与环境光学学报, 2022, 17(1): 16-28. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 324
|
|
|||||||||||||||||||||||||||||||||||||||||||||