[1] Whitby K T. The physical characteristics of sulfur aerosols [J]. Atmospheric Environment(1967), 1978, 12(1): 135-159. [2] Hussein T, Maso M D, Petaja T, et al. Evaluation of an automatic algorithm for fitting the particle number size distributions [J]. Boreal Environment Research, 2005, 10(5): 337-355. [3] Merikanto J, Spracklen D V, Mann G W, et al. Impact of nucleation on global CCN [J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8601-8616. [4] Yu F, Wang Z, Luo G, et al. Ion-mediated nucleation as an important global source of tropospheric aerosols [J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2537-2554. [5] Leaitch W R, Bottenheim J W, Biesenthal T A, et al. A case study of gas-to-particle conversion in an eastern canadian forest [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8095-8111. [6] O'Dowd C, McFiggans G, Creasey D, et al. On the photochemical production of new particles in the coastal boundary layer [J]. Geophysical Research Letters, 1999, 26(12): 1707-1710. [7] Schillawski R D, Baumgardner D. A study of new particle formation and growth involving biogenic [J]. Journal of Geophysical Research, 1998, 103(D13): 16385-16396. [8] Holmes N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications [J]. Atmospheric Environment, 2007, 41(10): 2183-2201. [9] Solomon S, Qin D, Manning M, et al. IPCC, Climate Change 2007: The Physical Scientific Basis [M]. New York: Cambridge University Press, 2007. [10] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical Reviews, 2012, 112(3): 1957-2011. [11] Weber R J, McMurry P H, Mauldin R L, et al. New particle formation in the remote troposphere: A comparison of observations at various sites [J]. Geophysical Research Letters, 1999, 26(3): 307-310. [12] Napari I, Kulmala M, Vehkamäki H. Ternary nucleation of inorganic acids, ammonia, and water [J]. The Journal of Chemical Physics, 2002, 117(18): 8418-8425. [13] Yu F Q, Turco R. Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms [J]. Atmospheric Chemistry and Physics, 2008, 8: 6085-6102. [14] Vuollekoski H, Kerminen V–M, Anttila T, et al. Iodine dioxide nucleation simulations in coastal and remote marine environments [J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2): D02206. [15] Kulmala M, Kerminen, V M. On the formation and growth of atmospheric nanoparticles [J]. Atmospheric Research, 2008, 90(2-4): 132-150. [16] Smith J N, Dunn M J, VanReken T M, et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth [J]. Geophysical Research Letters, 2008, 35(4): L04808. [17] Fiedler V, Dal Maso M, Boy M, et al. The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe [J]. Atmospheric Chemistry and Physics, 2005, 5(7): 1773-1785. [18] Boy M, Rannik U, Lehtinen K E J, et al. Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics [J]. Journal of Geophysical Research, 2003, 108(D21): 4667. [19] Nozière B, Kalberer M, Claeys M, et al. The Molecular identification of organic compouds in the atomsphere: State of the Art and Challenges [J]. Chemical Reviews, 2015, 115(10): 3919-3983. [20] Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review [J]. Atmospheric Environment, 1996, 30(24): 4233-4249. [21] Souza S R, Vasconcellos P C, Carvalho L R F. Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil[J]. Atmospheric Environment,1999, 33(16):2563-2574 [22] Gasparini R, Li R, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol [J]. Atmospheric Environment, 2004, 38(20): 3285-3303. [23] Fan J, Zhang R. Atmospheric oxidation mechanism of isoprene [J]. Environmental Chemistry, 2004, 1(3): 140-149. [24] Zhang R. Getting to the critical nucleus of aerosol formation [J]. Science, 2010, 328(5984): 1366-1367. [25] Yi T, Li H, Weng T, et al. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography [J]. Analytica Chimica Acta, 2008, 626(1): 78-88. [26] Pio C A, Silva P A, Cerqueira M A, et al. Diurnal and seasonal emissions of volatile organic compounds from cork oak(Quercus suber) trees [J]. Atomspheric Enviroment, 2005, 39(10): 1817-1827. [27] Forstner H J L, Flagan R C, Seinfeld J H. Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition [J]. Environmental Science and Technology, 1997, 31(5): 1345-1358. [28] Jang M S, Kamens R M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene [J]. Environmental Science and Technology, 2001, 35(18): 3626-3639. [29] O’Dowd C D, Aalto P, Hameri K, et al. Aerosol formation: Atmospheric particles from organic vapours [J]. Nature, 2002, 416(6880): 497-498. [30] Kavouras I G, Mihalopoulos N, Stephanou E G. Formation of atmospheric particles from organic acids produced by forests [J]. Nature, 1998, 395: 683-686. [31] Ehn M, Junninen H, Petäjä T, et al. Composition and temporal behavior of ambient ions in the boreal forest [J]. Atmospheric Chemistry and Physics, 2010, 10(17): 8513-8530. [32] Junninen H, Ehn M, Petäjä T, et al. A high-resolution mass spectrometer to measure atmospheric ion composition [J]. Atmospheric.Measurement Techniques, 2010, 3(4): 1039-1053. [33] Jordan A, Haidacher S, Hanel G, et al, A high resolution and high sensitivity proton-transfer-reactiontime-of-flight mass spectrometer (PTR-TOF-MS) [J]. International Journal of Mass Spectrometry, 2009, 286 (2): 122-128. [34] Vanhanen J, Mikkilä J, Lehtipalo K, et al. Particle size magnifier for nano-CN detection [J]. Aerosol Science and Technology, 2011, 45(4): 533-542. [35] Kulmala M, Riipinen I, Sipila M, et al. Toward direct measurement of atmospheric nucleation [J]. Science, 2007, 318(5847): 89-92. [36] Wang S C, Flagan R C. Scanning electrical mobility spectrometer [J]. Aerosol Science and Technology, 1990, 13(2): 230-240. [37] Yue D L, Hu M, Wu Z J, et al. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2): 1159-1171. [38] Yue D L, Hu M, Zhang R Y, et al. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing [J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4953-4960. [39] Zhang R Y, Suh I, Zhao J. et al. Atmospheric new particle formation enhanced by organic acids [J]. Science, 2004, 304(5676): 1487-1490. [40] Zhang R Y, Wang L, Khalizov A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution [J]. Proceedings of the National Academy of Science of the United States of America, 2009, 106(42): 17650-17654. [41] Hoffmann T, Bandur R, Marggraf U, et al. Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes [J]. Journal of Geophysical Research, 1998, 103(D19): 25569-25578. [42] Zhao J, Khalizov A, Zhang R, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689. [43] Nadykto A B, Yu F Q, Strong hydrogen bonding between atmospheric nucleation precursors and common organics [J]. Chemical Physics Letters, 2007, 435(1): 14-18. [44] McGraw R, Wu D T. Kinetic extensions of the nucleation theorem [J]. The Journal of Chemical Physics, 2003, 118(20): 9337-9347. [45] McGraw R, Zhang R Y. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system [J]. The Journal of Chemical Physics, 2008, 128(6): 064508. [46] Wang L, Khalizov A F, Zheng J, et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics [J]. Nature Geoscience, 2010, 3(4): 238-242. [47] Nadykto A B, Yu F, Strong hydrogen bonding between atmospheric nucleation precursors and common organics [J]. Chemical Physics Letters, 2007, 435(1): 14-18. [48] Nadykto A B, Du H, Yu F, Quantum DFT and DF-DFT study of vibrational spectra of sulfuric acid, sulfuric acid monohydrate, formic acid and its cyclic dimer [J]. Vibrational Spectroscopy, 2007, 44(2): 286-296. [49] Xu Y, Nadykto A B, Yu F, et al, Formation and properties of hydrogen-bonded complexes of common organic oxalic acid with atmospheric nucleation precursors [J]. Journal of Molecular Structure: THEOCHEM, 2010, 951(1): 28-33. [50] Xu Y, Nadykto A B, Yu F, et al. Interaction between common organic acids and trace nucleation species in the Earth’s Atmosphere [J]. The Journal of Physical Chemistry A, 2010, 114(1): 387-396. [51] Fan J W, Zhang R Y, Collins D, et al. Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas [J]. Geophysical Research Letters, 2006, 33(15): L15802. [52] Kurtén T, Sundberg M R, Vehkamaki H, et al. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate [J]. Journal of Physical Chemistry A, 2006, 110(22): 7178-7188. [53] Xu W, Zhang R Y. Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2012, 116(18): 4539-4550. [54] Xu W, Zhang R Y. A theoretical study of hydrated molecular clusters of amines and dicarboxylic acids [J]. The Journal of Chemical Physics, 2013, 139(6): 53-58. [55] Zhu Y P, Liu Y R, Huang T, et al. Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid [J]. The Journal of Physical Chemistry A, 2014, 118(36): 7959–7974. |