[1]
Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and
plants [J]. Nature, 2003, 421(6918), 57-60.
[2]
Zhang H, Zhang R Y, Shi Guangyu. The updated radiative forcing due to CO$_2$ and its effect on global
surface temperature change [J]. Advances in Atmospheric Sciences., 2013, 30(4), 1017-1024.
[3]
Zhang Hua, Xie Bing, Chen Qi, et al. PM2.5 and tropospheric ozone in China and pollutant emission
controlling integrated analyses [J]. Progressus Inquisitiones D Mutatione Climatis. 2014, 10(4), 289-296(in Chinese).
张华, 陈琪, 谢冰等.中国的PM2.5和对流层臭氧及污染物排放控制对策的综合分析 [J].气候变化研究进展, 2014, 10(4), 289-296.
[4]
Zhang H, Xie B, Chen Q, et al. PM2.5 and tropospheric ozone in China and pollutant emission controlling
integrated analyses [J]. Advance in Climate Change Research. 2014, 5(3): 136-141.
[5]
Sj"ogersten S, Black CR, Evers S, et al. Tropical wetlands: a missing link in the global carbon cycle? [J],
Global biogeochemical cycles, 2015, 28(12), 1371-1386.
[6]
Callendar G S. The artificial production of carbon dioxide and its influence on temperature [J].
Quarterly Journal of the Royal Meteorological Society, 1938, 64(275), 223-240.
[7]
Bacastow R B. The effect of temperature change of the warm surface waters of the oceans on atmospheric CO$_2$ [J].
Global Biogeochemical Cycles, 1996, 10(2), 319-333.
[8]
IPCC. Climate change 2013: the physical science basis [M]. Cambridge:Cambridge University Press, 2013.
[9]
Cooper M D A, Estoparagon'es C, Fisher J P, et al. Limited contribution of permafrost carbon to
methane release from thawing peatlands [J]. Nature Climate Change, 2017, 7(7).
[10]
Ye Hong, Li Huijuan. Progress in research on urban soil carbon cycle [J]. Ecologt and Environment,
2009, 18(3), 1134-1138(in Chinese).
叶红, 黎慧娟. 城市土壤碳循环特征研究进展 [J].生态环境学报, 2009, 18(3): 1134-1138.
[11]
Le Qu'er'e C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide [J].
Nature geoscience, 2009. 2(12): 831.
[12]
World Metrological Association. The state of greenhouse gases in the atmosphere based on global observations
through 2016 [M]. Geneva:WMO Greenhouse Gas Bulletin, 2017.
[13]
Meng Qianwen, Yin Qiu. Remote sensing analysis of multi-years spatial and temporal variation of CO$_2$ in
China [J]. Remote Sensing Technology and Application, 2016, 31(2): 203-213(in Chinese).
孟倩文, 尹球. 中国区域CO$_2$多年时空变化的卫星遥感分析[J]. 遥感技术与应用, 2016, 31(2): 203-213.
[14]
Shi Guangyu, Dai Tie, Xu Na. Latest progress of the study of atmospheric CO$_2$ concentration retrievals from
satellite [J]. Advances in Earth Science, 2010, 25(1):7-13(in Chinese).
石广玉, 戴铁, 徐娜. 卫星遥感探测大气CO$_2$浓度研究最新进展 [J]. 地球科学进展, 2010, 25(1): 7-13.
[15]
Menzel W P, Schmit T J, Zhang P, et al. Satellite based atmospheric infrared sounder development and
applications [J]. Bulletin of the American Meteorological Society. 2018, 99(3): 583-603.
[16]
Barkley M P, Monks P S, Hewitt A J, et al. Assessing the near surface sensitivity of SCIAMACHY atmospheric
CO$_2$ retrieved using (FSI) WFM-DOAS [J]. Atmospheric Chemistry & Physics Discussions, 2007, 7(1):3597-3619.
[17]
Pagano T S, Chahine M T, Olsen E T. Seven years of observations of mid-tropospheric CO$_2$ from the
Atmospheric Infrared Sounder [J]. Acta Astronautica, 2011, 69(7): 355-359.
[18]
Bai Wenguang, Zhang Xingying, Zhang Peng. Temporal and spatial distribution of tropospheric CO$_2$ over China
based on satellite observations [J]. Chinese Science Bulletin, 2010. 55(30): 2953-2960(in Chinese).
白文广, 张兴赢, 张鹏. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析[J]. 科学通报, 2010. 55(30): 2953-2960.
[19]
Butz A, Guerlet S, Hasekamp O, et al. Toward accurate CO$_2$ and CH$_4$ observations from GOSAT [J].
Geophysical Research Letters, 2011. 38(14): 130-137.
[20]
Hammerling D M, Michalak A M, Kawa S R. Mapping of CO$_2$ at high spatiotemporal resolution using
satellite observations: Global distributions from OCO-2 [J]. Journal of Geophysical Research: Atmospheres, 2012. 117(D6).
[21]
Yang D, Liu Y, Cai Z, et al. First global carbon dioxide maps produced from Tan Sat measurements [J].
Advances in Atmospheric Sciences, 2018, 35(6):621-623.
[22]
He Qian, Yu Tao, Cheng Tianhai, et al. Atmospheric carbon dioxide satellite remote sensing retrieval
accuracy inspection and spatio-temporal characteristics analysis [J]. Journal of Geo-Information Science,
2012, 14(2): 250-257(in Chinese).
何茜,余涛,程天海等. 大气二氧化碳遥感反演精度检验及时空特征分析[J]. 遥感技术与应用, 2012, 14(2): 250-257.
[23]
Pagano T S, Olsen E T. Global variability of midtropospheric carbon dioxide as measured by the Atmospheric
Infrared Sounder [J]. Journal of Applied Remote Sensing, 2014, 8(1):4480-4494.
[24]
Tarasova O, Koide H, Dlugokencky E, et al. The state of greenhouse gases in the atmosphere using global
observations through 2011 [J]. Egu General Assembly, 2012, 8, 110-112.
[25]
World Metrological Association. The State of Greenhouse Gases in the Atmosphere Based on Global Observations
Through 2004 [M]. Genvea: WMO Greenhouse Gas Bulletin, 2006.
[26]
British Petroleum Company. BP Statistical Review of World Energy June 2017 [M]. London:BP World Energy Review, 2017.
[27]
Jenny B, Liem J, vSavrivc B, et al. Interactive video maps: A year in the life of Earth's CO$_2$ [J].
Journal of Maps, 2016, 12(1): 1-7.
[28]
Pawson S, Gelaro R, Ott L, et al. A Study of the Carbon Cycle Using NASA Observations and the
GEOS Model [EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20180000764&qs=N%3D4294966724. 2018.
[29]
Chen C T A, Jones E P, Lin K. Wintertime total carbon dioxide measurements in the Norwegian and greenland seas [J].
Deep Sea Research Part A Oceanographic Research Papers, 1990, 37(9): 1455-1473.
[30]
Forkel M, Carvalhais N, R"odenbeck C, et al. Enhanced seasonal CO$_2$ exchange caused by amplified plant
productivity in northern ecosystems[C]// EGU General Assembly Conference. EGU General Assembly Conference Abstracts. 2016.
[31]
Zhou Mandi. CO$_2$ in Mid-troposphere Satellite Remote Sensing Retrieval Accuracy Inspection and the Errors' Analysis
[D]. Shanghai: Doctorial Dissertation of East China Normal University. 2013(in Chinese).
周曼蒂. 对流层CO$_2$浓度卫星遥感反演及误差分析 [D]. 上海:华东师范大学博士论文. 2013.
[32]
Christensen T R, Friborg T, Sommerkorn M, et al. Trace gas exchange in a high-arctic valley: 1.
Variations in CO$_2$ and CH$_4$ flux between tundra vegetation types [J]. Global Biogeochemical Cycles, 2000, 14(3): 701-713.
[33]
Welker J M, Fahnestock J T, Jones M H. Annual CO$_2$ flux in dry and moist arctic tundra: field responses to
increases in summer temperatures and winter snow depth [J]. Climatic Change, 2000, 44(1-2): 139-150.
[34]
Ostendorf B. Modeling the influence of hydrological processes on spatial and temporal patterns of CO$_2$ soil
efflux from an arctic tundra catchment [J]. Arctic & Alpine Research, 1996, 28(3):318-327.
[35]
Li Mingwei. The Study of the Different Atmospheric Carbon Dioxide Concentration and Carbon Sink Between the
Northern and Southern Hemispheres [D]. Beijing:
Master's Thesis of Tsinghua University, 2013(in Chinese).
李明威. 大气二氧化碳浓度及碳源汇的南北半球差异研究[D]. 北京:清华大学硕士论文, 2013.
[36]
Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO$_2$ [J]. Science, 2004, 305(5682): 367.
[37]
Department of Energy Statistics, National Bureau of Statistics of China. China Energy Statistical Yearbook 2017[M].
Beijing: China Statistics Press. 2017(in Chinese).
国家统计局能源统计司. 中国能源统计年鉴2017 [M]. 北京:中国统计出版社. 2017.
[38]
Zhang Li, Lv Bihong, Li Wei. The present situation and characteristic of CO$_2$ emissions in different region
of China over the past decade [J]. Journal of Zhejiang University (Science Edition), 2012, 39(5), 552-556(in Chinese).
张莉, 吕碧洪, 李伟. 近10年中国不同区域CO$_2$排放现状和特征 [J].浙江大学学报(理学版), 2012, 39(5), 552-556.
[39]
Zhang Hongwu, Shi Linyun. The comparative analysis of CO$_2$ emission characteristics of various provinces and
regions in China [C]// Annual meeting of the Chinese academy of environmental sciences. 2010(in Chinese).
张宏武, 时临云. 中国各省区CO$_2$排放特征的比较分析[C]// 中国环境科学学会学术年会. 2010.
[40]
Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis [J]. Global Change Biology, 2002, 8(4), 345-360.
[41]
Yao Zuoxin, Li Qin, Liu Weiping, et al. Response of seasonal frozen soil to climate change in
Taxkorgan River Valley of Xinjiang duing 1960-2015 [J]. Arid Land Geography, 2017, 40(2), 257-265(in Chinese).
姚作新, 李秦, 刘卫平等. 1960-2015年新疆塔什库尔干河谷季节性冻土对气候变化的响应 [J].干旱区地理(汉文版), 2017, 40(2), 257-265.
[42]
Wang Enchong. Glacier Melting Water Storage on the Tibetan plateau had reduced the tenth in the past 30 years [J].
Pratacultural Science, 2007, (2), 104-104(in Chinese).
王恩重. 青藏高原冰川融化蓄水量近30年减少1/10 [J]. 草业科学, 2007, (2), 104-104.
[43]
Zhao Yonghua, Zhao Lin, Wu Tianyun, et al. Variation of CO$_2$ Concentration in Active Layer in
Beiluhe Permafrost Region of the Tibetan Plateau during Winter and Spring [J].
Journalof Glaciology and Geocryology, 2006, 28(2), 183-190(in Chinese).
赵拥华, 赵林, 武天云等. 冬春季青藏高原北麓河多年冻土活动层中气体CO$_2$浓度分布特征 [J].冰川冻土, 2006, 28(2), 183-190.
[44]
Nuerpatiman$cdot$Maimaiti, Parhat.Abdulla. The temperature and precipitation changes in tashkurgan county,
pamir plateau from 1960 to 2014 [J]. Desert and Oasis Meteorology, 2015, 9(1),54-58(in Chinese).
努尔帕提曼$cdot$买买提热依木, 帕尔哈提·阿不都拉. 帕米尔高原塔什库尔干县1960-2014年气温及降水变化 [J].沙漠与绿洲气象, 2015, 9(1): 54-58.
[45]
Li Changming. Phylogenetic and functional Diversity of Bacterial Community in Permafrost-Affected Soils in Qinghai-Tibet Plateau
[D]. Lanzhou: Master's Thesis of Lanzhou University, 2013(in Chinese).
李昌明. 青藏高原多年冻土区土壤微生物及其与环境关系的研究[D]. 兰州:兰州大学硕士论文, 2012.
|