大气与环境光学学报 ›› 2020, Vol. 15 ›› Issue (3): 180-188.

• 大气光学 • 上一篇    下一篇

激光掩星探测大气水汽的阿贝尔变换

洪光烈1,李虎$1,3,王建宇1,3*,王一楠2, 孔伟1   

  1. 1 中国科学院上海技术物理研究所中国科学院空间主动光电技术重点实验室, 上海200083;
    2 中国科学院大气物理研究所中国科学院中层大气与全球环境探测重点实验室, 北京 100029;
    3 中国科学院大学,北京 100049
  • 出版日期:2020-05-28 发布日期:2020-05-27

Abel Transformation of Laser Occultation for Profiling Water Vapor in UTLS

HONG Guanglie1, LI Hu1,3, WANG Jianyu1,3*, WANG Yinan2, KONG Wei1   

  1. 1 Key Laboratory of Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, 
    Chinese Academy of Sciences, Shanghai 200083, China;
    2 Key Laboratory of Middle Atmosphere and Global Environment Observation,
    Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
    3 University of Chinese Academy of Sciences,\quad Beijing 100049, China
  • Published:2020-05-28 Online:2020-05-27

摘要: 对流层顶-平流层下区域(UTLS)的水汽分子密度对于研究全球变化、大气物质能量交换具有十分重要的意义,激光掩星技术可能是
一种探测该区域水汽的有效手段。掩星对于大气探测的核心思想源于阿贝尔(Abel)变换。GPS掩星的阿贝尔积分变换表达的是
连线的折射角与切点处折射率之间的关系,而与GPS掩星的阿贝尔积分变换不同的是,激光掩星的阿贝尔积分变换建立的是全路
径大气光学厚度与切点处大气消光系数之间的关系。从光线的程函方程出发,通过变量替换、坐标置换,从而建立起
大气光学厚度与大气消光系数之间的关系。由于光在切点处大气的消光系数和该处大气的水汽浓度成正比,因此分别在微
卫星和微卫星之间发射、接收0.935 $\mu$m掩星激光脉冲,连接两者之间的光束穿过大气层,计算积分路径上其水汽双波长
差分光学厚度,由阿贝尔积分变换反演即可获得光束路径切点处水汽浓度。随着掩星连线的上下移动,连线切点高度随着卫星
相向或背向而行而变化形成水汽浓度廓线。由于激光束发散角小,因此由激光掩星方法获得的水汽廓线高程精度高,
水汽的吸收消光可以直接得到水汽的分子密度,优于GPS掩星的相位延迟间接方法,可以更直接精确地探测大气对流层顶-平
流层下区域的水汽分子密度。此外,研究表明激光掩星方法的光谱分辨率优于太阳掩星方法的光谱分辨率。

关键词: 激光掩星, 阿贝尔变换, 差分光学厚度, 水汽浓度

Abstract: The molecular density of water vapor in upper troposphere-lower stratosphere (UTLS) is of great 
significance for studying global change and exchange of atmospheric matter and energy. Laser 
occultation technique may be an effective means to detect water vapor in this area. The core 
idea of occultation for atmosphere detection stems from the Abel transformation. Unlike the 
Abel integral transformation of the GPS occultation, which expresses the relationship between 
the refraction angle of the ray and the refractive index at tangent point, the Abel integral 
transformation of laser occultation establishes the relationship between the atmospheric 
optical depth and the atmospheric extinction coefficient at tangent point. Starting from 
the eikonal equation of the light, the relationship between the atmospheric optical depth and 
the atmospheric extinction coefficient is re-established through variable substitution 
and coordinate replacement. The extinction coefficient of the atmosphere at the tangent 
point is proportional to the concentration of water vapor at the site. A 0.935 $\mu$m 
occultation laser pulse is transmitted and received between the two microsatellites 
 and the beam between the two microsatellites passes through the 
atmosphere. The water vapor dual-wavelength differential optical depth on the integrated 
path is calculated, and then the water vapor concentration at the tangent point of the 
beam path can be obtained through the inversion of Abel integral transform. Furthermore, 
as the occultation ray moves up and down, the height of the ray tangent point forms a 
water vapor concentration profile as the height of the satellite changes with satellite 
moving front to front or back to back. Because of the small divergence angle of the laser 
beam, the obtained water vapor profile has high elevation accuracy with the laser 
occultation method, and the molecular density of water vapor can be directly obtained from 
the water vapor absorption and extinction, which is superior to that obtained by the phase 
delay indirect method of GPS occultation, so the concentration of water vapor molecules in 
the upper troposphere-lower the stratosphere can be detected more directly and accurately. 
In addition, the spectral resolution of laser occultation is higher than that of the sun occultation.

Key words:  laser occultation, Abel transformation, differential optical depth, the volume mixing ratio of vapor

中图分类号: