大气与环境光学学报 ›› 2020, Vol. 15 ›› Issue (3): 217-223.

• 环境光学监测技术 • 上一篇    下一篇

基于MAX-DOAS观测的淮北冬季NO2变化特征

胡丽莎,李素文*,牟福生   

  1. 淮北师范大学,物理与电子信息学院,安徽淮北 235000
  • 出版日期:2020-05-28 发布日期:2020-05-27

Variation of NO2 in Winter in Huaibei Based on Ground-Based MAX-DOAS Observation

HU Lisha, LI Suwen*, MOU Fusheng   

  1. College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
  • Published:2020-05-28 Online:2020-05-27

摘要: 基于2018年12月8日~12月31日淮北地区多轴差分吸收光谱技术(MAX-DOAS)获得的太阳散射光谱观测数据,反演了该地区NO2对流层柱浓度,
并分析了冬季不同天气下NO$_2$浓度日变化特征。观测结果表明NO2浓度高值出现在12月18日~12月27日期间,日均值最大值6.83×1016
molecules/cm2出现在12月27日,约为日均值最低值的2.9倍。结合风场轨迹模型研究了不同大气条件下的风场,发现在NO2浓度较低时段主要为
偏北风场, NO2浓度高值时段偏南风场增加,表明城区产生的污染向观测区域进行了输送。将MAX-DOAS结果与OMI卫星结果进行了
对比,发现两者具有较好的一致性(R2=0.88)。

关键词: 多轴差分吸收光谱技术, NO2垂直柱浓度, 变化特征, 对比分析

Abstract: Based on the observation data of solar scattering spectrum obtained by the multi-axis differential absorption 
spectroscopy (MAX-DOAS) in Huaibei area, China, from December 8 to December 31, 2018, the tropospheric NO2 vertical column 
density was retrieved, and the diurnal variation of NO2 concentration under different weather conditions 
in winter was analyzed. It is found that the high NO2 concentration occurrs in the period from 
December 18 to December 27, and the maximum daily average value appears on December 27, which is 
about 2.9 times of the lowest daily average. Combined with the wind field trajectory model, the wind 
field under different atmospheric conditions was studied. It is found that the northerly wind 
field is mainly in the period of low NO2 concentration, and the southerly wind field 
increases when NO2 concentration is high, which means that the pollution generated in 
the urban area is transported to the observation area. Moreover, the results of MAX-DOAS 
were compared with those of OMI satellite results, and it is found the two results show good consistency (R2=0.88).

Key words:  , multi-axis differential optical absorption spectroscopy, NO2 vertical column density, variation ,
characteristics,
contrastive analysis

中图分类号: