大气与环境光学学报 ›› 2020, Vol. 15 ›› Issue (5): 380-392.

• 光学遥感 • 上一篇    下一篇

基于深度学习的多角度遥感影像云检测方法

李佳欣1;2, 赵 鹏1;2, 方 薇3∗, 宋尚香1;2
  

  1. 1 安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230039; 2 安徽大学计算机科学与技术学院, 安徽 合肥 230001; 3 中国科学院合肥物质科学研究院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031
  • 收稿日期:2020-02-18 修回日期:2020-03-30 出版日期:2020-09-28 发布日期:2020-09-28
  • 通讯作者: 方薇:E-mail: fwei@aiofm.ac.cn E-mail:fwei@aiofm.ac.cn
  • 作者简介:李佳欣 ( 1994 - ), 男, 湖北天门人, 硕士研究生, 主要从事计算机视觉与遥感影像方面的研究。 E-mail: arthurpendgradon@163.com
  • 基金资助:
    The National Natural Science Foundation of China (国家自然科学基金, 61602004), Natural Science Foundation of Anhui Province (安徽省自 然科学基金项目, 1908085MF188, 1908085MF182), Natural Science Foundation of the Education Department of Anhui Province (安徽省高校自然科学研究 重点项目, KJ2018A0013, KJ2017A011)


Cloud Detection of Multi-Angle Remote Sensing Image Based on Deep Learning

Li Jiaxin1;2, Zhao Peng1;2, Fang Wei3∗, Song Shangxiang1;2 #br#   

  1. 1 Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230039, China; 2 School of Computer Science and Technology, Anhui University, Hefei 230001, China; 3 Key Laboratory of Optical Calibration and Characterization of Chinese Academy of Science, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2020-02-18 Revised:2020-03-30 Published:2020-09-28 Online:2020-09-28
  • Supported by:
    The National Natural Science Foundation of China

摘要: 云检测是遥感影像处理的重要任务之一。目前遥感影像云检测中多使用到卫星的多光谱、多通道信息, 而 关于多角度信息对云检测影响的研究较少。为了探索遥感影像多角度信息作为云特征对训练云分类网络精度的影 响, 提出一种基于深度学习的遥感多角度云检测方法, 以 SegNet 为基础网络结构, 提取含有多角度信息的遥感影像的 特征表示, 训练含有多角度信息的遥感影像云检测模型。测试结果表明, 所提方法全局精度为 91.39%, 平均重叠率为 83.99%。分析表明单角度云检测具有一定的局限性, 而利用多角度信息作为云特征训练云分类网络可以提升云检测 精度。此外, 还探索了 POLDER 仪器中不同角度对于云检测结果的影响情况。


关键词: 云检测, 遥感影像, 多角度, 神经网络, SegNet

Abstract: Cloud detection is one of the important tasks for remote sensing image processing. At present, the multi-spectral and multi-channel information is often used in cloud detection of remote sensing image, but the research on the influence of multi-angle information on cloud detection is still insufficient. To explore the influence of multi-angle information as cloud feature on the accuracy of cloud classification, a cloud detection method with multi-angles remote sensing based on deep learning is proposed. The proposed method takes SegNet as backbone network, and trains a multi-angle information based cloud detection model by extracting the remote sensing image feature with multi-angle information. Extensive experimental results demonstrate that the Global Accuracy and the mean intersection over union (MeanIoU) of the proposed method are 91.39% and 83.99% respectively. And the method proves the limitations of single angle cloud detection and the effectiveness of multi-angle information on the improvement of the cloud detection accuracy. In addtion, the influence of different angles on the cloud detection in POLDER is also explored.


Key words: cloud detection, remote sensing image, multi-angle, neural network, SegNet

中图分类号: