大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (4): 320-330.

• 大气光学 • 上一篇    下一篇

中国东部典型城市群AOD 时空演变及预测

唐 燕∗, 许 睿, 孟繁玥   

  1. 天津理工大学管理学院, 天津 300384
  • 收稿日期:2020-06-24 修回日期:2021-02-12 出版日期:2021-07-28 发布日期:2021-07-28
  • 通讯作者: E-mail: sugaryan@yeah.net E-mail:sugaryan@yeah.net
  • 作者简介:唐 燕 (1984 - ), 女, 天津人, 博士, 副教授, 硕士生导师, 主要从事生态经济与环境保护方面的研究。 E-mail: sugaryan@yeah.net
  • 基金资助:
    Supported by Soft Science Research Project of Tianjin Science and Technology Development Strategic Research Plan (天津市科技发展战略 研究计划软科学研究项目, 19ZLZXZF00390), Research Project Planning Fund for Humanities and Social Sciences of the Ministry of Education (教育部人文 社会科学研究项目规划基金项目, 20A10060005)

Spatiotemporal Evolution and Prediction of AOD in Typical Urban Agglomerations in Eastern China

TANG Yan∗, XU Rui , MENG Fanyue   

  1. School of Management, Tianjin University of Technology, Tianjin 300384, China
  • Received:2020-06-24 Revised:2021-02-12 Published:2021-07-28 Online:2021-07-28

摘要: 为精准预测我国东部典型城市群的气溶胶光学厚度 (AOD), 基于 2010–2019 年 MODIS 数据, 分析了京津冀、 长三角、珠三角区域之间以及区域内部的 AOD 时空差异特征, 构建了小波变换与 BP 神经网络相结合的 AOD 预测模 型, 并对典型城市群 AOD 进行了预测。研究结果表明: 1) 各城市群气溶胶浓度峰值均出现在夏季, 京津冀地区 AOD 均值最高, 长三角次之, 珠三角最小; 2) AOD 影响因素分析表明, 生产总值指数、人口密度、温度因素与 AOD 正相关, 植被覆盖指数 (NDVI)、降水量、风速与 AOD 负相关; 3) 各地区 AOD 预测结果其平均绝对误差 (MAE) 均低于 0.12, 误差小于 BP 神经网络预测结果, R2 均大于 0.75, 说明该模型相比 BP 神经网络, 能够有效提高 AOD 预测能力。

关键词: 典型城市群, 气溶胶光学厚度, 时空演变分析, 气溶胶光学厚度预测

Abstract: To accurately predict the aerosol optical depth (AOD) of typical urban agglomerations in eastern China, based on MODIS data from 2010 to 2019, the spatial and temporal differences of AOD between Beijing-TianjinHebei region, Yangtze River Delta and Pearl River Delta and within them were analyzed. The AOD prediction model based on the combination of wavelet transform and BP neural network was built to predict AOD in typical urban agglomerations. The results show that: 1) the peak value of aerosol concentration in all urban agglomerations occurs in summer, and the average AOD of Beijing-Tianjin-Hebei region is the highest, followed by Yangtze River Delta and Pearl River Delta. 2) the analysis of AOD influencing factors shows that GDP index, population density and temperature are positively correlated with AOD, while normalized difference vegetation index (NDVI), precipitation and wind speed are negatively correlated with AOD. 3) the mean absolute error (MAE) of AOD prediction results in each region is lower than 0.12, error is less than BP neural network and R2 is greater than 0.75, indicating that the model can effectively improve AOD prediction ability compared with BP neural network.

Key words: typical urban agglomeration, aerosol optical depth, analysis on spatial and temporal evolution; aerosol optical depth prediction

中图分类号: