大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (4): 283-298.
• 综述 • 下一篇
吴孔逸1, 侯伟真2∗, 史 正2, 许 华2, 温亚南2
出版日期:
2021-07-28
发布日期:
2021-07-30
通讯作者:
E-mail: houwz@radi.ac.cn
作者简介:
吴孔逸 (1980 - ), 河南商城人, 高级工程师, 主要从事空间大数据处理与应用机制研究。 E-mail: kywu@infomail.mnr.gov.cn
基金资助:
WU Kongyi1, HOU Weizhen2∗, SHI Zheng2, XU Hua2, WEN Yanan2
Published:
2021-07-28
Online:
2021-07-30
摘要: 对国际上双角度、多角度及偏振卫星气溶胶遥感反演算法的最新研究进展进行了综述。双角度遥感作为多 角度遥感的一种典型情况, 算法的核心思想同样适用于两个传感器在几乎同时对同一地区进行观测的情况。以双角 度观测的沿轨扫描辐射计 (ATSR) 系列传感器为例, 总结了 ADV (ATSR dual view)、 SU (Swansea University) 和 ORAC (Oxford-RAL aerosol and cloud) 最优估计等典型的气溶胶反演算法原理及最新研究进展。在此基础上, 以当前国际上 采用多角度观测的星载和机载传感器为例, 介绍并总结了星载多角度标量反演算法、星载和机载多角度偏振反演方 法的最新研究进展。通过系统发掘双角度和多角度传感器在气溶胶卫星及机载遥感研究中的优势和潜力, 为我国多 角度及偏振遥感反演算法的设计和发展提供了有效参考和关键支撑。
中图分类号:
吴孔逸, 侯伟真∗, 史 正, 许 华, 温亚南. 基于卫星多角度观测的气溶胶遥感反演算法研究进展[J]. 大气与环境光学学报, 2021, 16(4): 283-298.
WU Kongyi, HOU Weizhen∗, SHI Zheng, XU Hua, WEN Yanan. Research Progress of Aerosol Remote Sensing Retrieval Algorithm Based on Satellite Multi-Angle Observation[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 283-298.
[1] | Shindell D, Faluvegi G. Climate response to regional radiative forcing during the twentieth century [J]. Nature Geoscience, |
20 | 09, 2(4): 294-300. |
[2] | Hasekamp O P, Gryspeerdt E, Quaas J. Analysis of polarimetric satellite measurements suggests stronger cooling due to |
aerosol-cloud interactions [J]. Nature Communications, 2019, 10: 5405. | |
[3] | Bellouin N, Boucher O, Haywood J, et al. Global estimate of aerosol direct radiative forcing from satellite measurements [J]. |
Nature, 2005, 438(7071): 1138-1141. | |
[4] | Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon [J]. Nature Geoscience, 2008, 1(4): |
22 | 1-227. |
[5] | Shindell D, Faluvegi G. Climate response to regional radiative forcing during the twentieth century [J]. Nature Geoscience, |
20 | 09, 2(4): 294-300. |
[6] | Stephens G L, Li J, Wild M, et al. An update on earth′s energy balance in light of the latest global observations [J]. Nature |
Geoscience, 2012, 5(10): 691-696. | |
[7] | Holben B N, Eck T F, Slutsker I, et al. AERONET-A federated instrument network and data archive for aerosol characterization |
[J] | Remote Sensing of Environment, 1998, 66(1): 1-16. |
[8] | Li Z Q, Xu H, Li K T, et al. Comprehensive study of optical, physical, chemical and radiative properties of total columnar atmospheric aerosols over China: An overview of sun-sky radiometer observation network (SONET) measurements [J]. Bulletin |
of the American Meteorological Society, 2018, 99(4): 739-755. | |
[9] | Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system [J]. ´ Nature, 2002, 419(6903): 215-223. |
[10] | Dubovik O, Li Z Q, Mishchenko M I, et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, |
results, and perspectives [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: 474-511. | |
[11] | Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties |
from spectral multi-angle polarimetric satellite observations [J]. Atmospheric Measurement Techniques, 2011, 4(5): 975-1018. | |
[12] | Sayer A M, Govaerts Y, Kolmonen P, et al. A review and framework for the evaluation of pixel-level uncertainty estimates in |
satellite aerosol remote sensing [J]. Atmospheric Measurement Techniques, 2020, 13(2): 373-404. | |
[13] | Kaufman Y J, Tanre D, Remer L A, ´ et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate |
resolution imaging spectroradiometer [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 17051-17067. | |
[14] | Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land |
from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance [J]. Journal of Geophysical Research, | |
20 | 07, 112(D13): D13211. |
[15] | Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean [J]. Atmospheric |
Measurement Techniques Discussions, 2013, 6(11): 2989-3034. | |
[16] | Hsu N C, Tsay S C, King M D, et al. Aerosol properties over bright-reflecting source regions [J]. IEEE Transactions on |
Geoscience and Remote Sensing, 2004, 42(3): 557-569. | |
[17] | Hsu N C, Tsay S C, King M D, et al. Deep blue retrievals of Asian aerosol properties during ACE-Asia [J]. IEEE Transactions |
on Geoscience and Remote Sensing, 2006, 44(11): 3180-3195. | |
[18] | Yang Leiku, Hu Xiuqing, Wang Han, et al. Preliminary test of quantitative capability in aerosol retrieval over land from |
MERSI-II onboard Fengyun-3D [J]. Journal of Remote Sensing, 2021. DOI: 10.11834/jrs.20200286. | |
杨磊库, 胡秀清, 王 涵, 等. 风云三号 D 星 MERSI-II 陆地气溶胶反演定量能力初探 [J]. 遥感学报, 2021. DOI: | |
10 | 11834/jrs.20200286. |
[19] | Diner D J, Beckert J C, Reilly T H, et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment |
overview [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1072-1087. | |
[20] | Diner D J, Martonchik J V, Kahn R A, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol |
and surface retrievals over land [J]. Remote Sensing of Environment, 2005, 94(2): 155-171. | |
[21] | Wang Lei, Zhang Peng, Sun Ling, et al. Recent researches on aerosol opacity retrieval from multi-angle satellite radiometers |
[J] | Remote Sensing Information, 2012, 27(1): 110-115. |
王 磊, 张 鹏, 孙 凌, 等. 多角度气溶胶遥感研究进展 [J]. 遥感信息, 2012, 27(1): 110-115. | |
[22] | Fougnie B, Marbach T, Lacan A, et al. The multi-viewing multi-channel multi-polarisation imager-Overview of the 3MI |
polarimetric mission for aerosol and cloud characterization [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 18, 219: 23-32. |
[23] | Fougnie B, Chimot J, Vazquez-Navarro M, ´ et al. Aerosol retrieval from space—how does geometry of acquisition impact our |
ability to characterize aerosol properties [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107304. | |
[24] | Waquet F, Leon J-F, Cairns B, ´ et al. Analysis of the spectral and angular response of the vegetated surface polarization for the |
purpose of aerosol remote sensing over land [J]. Applied Optics, 2009, 48(6): 1228-1236. | |
[25] | Thomas G E, Carboni E, Sayer A M, et al. Oxford-RAL Aerosol and Cloud (ORAC): Aerosol Retrievals From Satellite |
Radiometers [M]. Kokhanovsky A.A., de Leeuw G. Satellite Aerosol Remote Sensing over Land. Berlin: Springer, 2009, | |
19 | 3-225. |
[26] | Veefkind J P, De Leeuw G, Durkee P A. Retrieval of aerosol optical depth over land using two-angle view satellite radiometry |
during TARFOX [J]. Geophysical Research Letters, 1998, 25(16): 3135-3138. | |
[27] | North P R J. Estimation of aerosol opacity and land surface bidirectional reflectance from ATSR-2 dual-angle imagery: Operational method and validation [J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D12): 4149. |
[28] | Sogacheva L, Kolmonen P, Virtanen T H, et al. Determination of land surface reflectance using the AATSR dual-view capability |
[J] | Atmospheric Measurement Techniques, 2015, 8(2): 891-906. |
[29] | Tang J K, Xue Y, Yu T, et al. Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS |
[J] | Remote Sensing of Environment, 2005, 94(3): 327-334. |
[30] | Mei L L, Xue Y, de Leeuw G, et al. Aerosol optical depth retrieval in the Arctic region using MODIS data over snow [J]. |
Remote Sensing of Environment, 2013, 128: 234-245. | |
[31] | Zheng F X, Hou W Z, Sun X B, et al. Optimal estimation retrieval of aerosol fine-mode fraction from ground-based sky light |
measurements [J]. Atmosphere, 2019, 10(4): 196. | |
[32] | Hou W Z, Li Z Q, Wang J, et al. Improving remote sensing of aerosol microphysical properties by near-infrared polarimetric |
measurements over vegetated land: Information content analysis [J]. Journal of Geophysical Research: Atmospheres, 2018, | |
12 | 3(4): 2215-2243. |
[33] | Hou W Z, Li Z Q, Song C Y, et al. Study on errors propagation in synchronous atmospheric correction for HJ-2 satellites [C]. |
Applied Optics and Photonics China (AOPC2019), 2019, 1133: 113380V. | |
[34] | Hou W, Li Z, Zheng F, et al. Retrieval of aerosol microphysical properties based on the optimal estimation method: Information |
content analysis for satellite polarimetric remote sensing measurements [C]. Proceedings of the International Archived of | |
the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS TC III Mid-term Symposium “Development, | |
Technologies and Applications in Remote Sensing”, 2018, XLII-3, 533-537. | |
[35] | Donlon C, Berruti B, Buongiorno A, et al. The global monitoring for environment and security (GMES) sentinel-3 mission [J]. |
Remote Sensing of Environment, 2012, 120: 37-57. | |
[36] | Llewellyn-Jones D, Remedios J. The advanced along track scanning radiometer (AATSR) and its predecessors ATSR-1 and |
ATSR-2: An introduction to the special issue [J]. Remote Sensing of Environment, 2012, 116: 1-3. | |
[37] | Coppo P, Ricciarelli B, Brandani F, et al. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface |
monitoring from space [J]. Journal of Modern Optics, 2010, 57(18): 1815-1830. | |
[38] | Shen M, Duan H, Cao Z, et al. Sentinel-3 OLCI observations of water clarity in large lakes in Eastern China: Implications for |
SDG 6.3.2 evaluation [J]. Remote Sensing of Environment, 2020, 247: 111950. | |
[39] | Guan Q, Feng L, Hou X J, et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS |
and OLCI observations [J]. Remote Sensing of Environment, 2020, 246: 111890. | |
[40] | Bi S, Li Y, Wang Q, et al. Inland water atmospheric correction based on turbidity classification using OLCI and SLSTR |
synergistic observations [J]. Remote Sensing, 2018, 10(7): 1002. | |
[41] | Kolmonen P, Sogacheva L, Virtanen T H, et al. The ADV/ASV AATSR aerosol retrieval algorithm: Current status and presentation of a full-mission AOD dataset [J]. International Journal of Digital Earth, 2016, 9(6): 1-17. |
[42] | Wang M, Gordon H R. Radiance reflected from the ocean-atmosphere system: Synthesis from individual components of the |
aerosol size distribution [J]. Applied Optics, 1994, 33(30): 7088-7095. | |
[43] | Durkee P A, Jensen D R, Hindman E E, et al. The relationship between marine aerosol particles and satellite-detected radiance |
[J] | Journal of Geophysical Research: Atmospheres, 1986, 91(D3): 4063-4072. |
[44] | Veefkind J P, de Leeuw G. A new algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements [J]. Journal of Aerosol Science, 1998, 29(10): 1237-1248. |
[45] | Flowerdew R J, Haigh J D. An approximation to improve accuracy in the derivation of surface reflectances from multi-look |
satellite radiometers [J]. Geophysical Research Letters, 1995, 22(13): 1693-1696. | |
[46] | Veefkind J P, de Leeuw G, Stammes P, et al. Regional distribution of aerosol over land, derived from ATSR-2 and GOME [J]. |
Remote Sensing of Environment, 2000, 74(3): 377-386. | |
[47] | Sundstrom A M, Kolmonen P, Sogacheva L, ¨ et al. Aerosol retrievals over China with the AATSR dual view algorithm [J]. |
Remote Sensing of Environment, 2012, 116: 189-198. | |
[48] | North P, Heckel A, Davies W, et al. Algorithm theoretical basis document (ATBD) instruments: ATSR-2 and AATSR algorithm: |
SU-ATSR [OL]. 2017. https://climate.esa.int/sites/default/files/Aerosol cci2 ATBD ATSR SU v4.3.pdf. | |
[49] | Grey W M, North P R, Los S O. Computationally efficient method for retrieving aerosol optical depth from ATSR-2 and |
AATSR data [J]. Applied Optics, 2006, 45(12): 2786-2795. | |
[50] | Grey W M, North P R, Los S O, et al. Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: Global validation and intersensor comparisons [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): |
21 | 84-2197. |
[51] | Vermote E F, Tanre D, Deuze J L, ´ et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview [J]. |
Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686. | |
[52] | Thomas G E, Poulsen C A, Curier R L, et al. Comparison of AATSR and SEVIRI aerosol retrievals over the northern Adriatic |
[J] | Quarterly Journal of the Royal Meteorological Society, 2007, 133(S1): 85-95. |
[53] | Thomas G E, Poulsen C A, Povey A C, et al. Algorithm theoretical basis document (ATBD) AATSR Oxford-RAL aerosol and |
cloud (ORAC) [OL]. 2017. https://climate.esa.int/sites/default/files/Aerosol cci2 ATBD ATSR ORAC v3.0.pdf. | |
[54] | Martonchik J V, Diner D J, Kahn R A, et al. Techniques for the retrieval of aerosol properties over land and ocean using |
multiangle imaging [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1212-1227. | |
[55] | Martonchik J V, Diner D J, Crean K A, et al. Regional aerosol retrieval results from MISR [J]. IEEE Transactions on Geoscience |
and Remote Sensing, 2002, 40(7): 1520-1531. | |
[56] | Kahn R A, Gaitley B J, Martonchik J V, et al. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth |
validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations [J]. Journal of Geophysical | |
Research: Atmospheres, 2005, 110(D10): D10S04. | |
[57] | Liu Y, Sarnat J A, Coull B A, et al. Validation of multiangle imaging spectroradiometer (MISR) aerosol optical thickness |
measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States [J]. Journal of | |
Geophysical Research: Atmospheres, 2004, 109(D6): D06205. | |
[58] | Martonchik J V, Kahn R A, Diner D J. Retrieval of Aerosol Properties Over Land Using MISR Observations [M]. Kokhanovsky |
A. A., de Leeuw G. Satellite Aerosol Remote Sensing Over Land. Berlin: Springer, 2009: 267-292. | |
[59] | Zhang Y, Li Z Q, Qie L L, et al. Retrieval of aerosol optical depth using the empirical orthogonal functions (EOFs) based on |
PARASOL multi-angle intensity data [J]. Remote Sensing, 2017, 9(6): 578. | |
[60] | Lyapustin A, Martonchik J, Wang Y J, et al. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative |
transfer basis and look-up tables [J]. Journal of Geophysical Research: Atmosphere, 2011, 116(D3): D03210. | |
[61] | Lyapustin A, Wang Y J, Laszlo I, et al. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm |
[J] | Journal of Geophysical Research: Atmospheres, 2011, 116(D3): D03211. |
[62] | Lyapustin A, Wang Y J, Laszlo I, et al. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. |
Atmospheric correction [J]. Remote Sensing of Environment, 2012, 127: 385-393. | |
[63] | Zhang Z Y, Wu W L, Fan M, et al. Evaluation of MAIAC aerosol retrievals over China [J]. Atmospheric Environment, 2019, |
20 | 2: 8-16. |
[64] | She L, Zhang H K, Wang W L, et al. Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol |
algorithm for Himawari-8 data [J]. Remote Sensing, 2019, 11(23): 2771. | |
[65] | Xue Y, He X W, Xu H, et al. China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol |
properties algorithm [J]. Atmospheric Environment, 2014, 95: 45-58. | |
[66] | Hansen J E, Travis L D. Light scattering in planetary atmospheres [J]. Space Science Reviews, 1974, 16(4): 527-610. |
[67] | Deuze J L, Br ´ eon F M, Devaux C, ´ et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized |
measurements [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D5): 4913-4926. | |
[68] | Herman M, Deuze J L, Marchand A, ´ et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval |
using a nonspherical particle model [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S02. | |
[69] | Fan X H, Goloub P, Deuze J L, ´ et al. Evaluation of PARASOL aerosol retrieval over North East Asia [J]. Remote Sensing of |
Environment, 2008, 112(3): 697-707. | |
[70] | Tanre D, Br ´ eon F M, Deuz ´ e J L, ´ et al. Remote sensing of aerosols by using polarized, directional and spectral measurements |
within the A-Train: the PARASOL mission [J]. Atmospheric Measurement Techniques, 2011, 4(7): 1383-1395. | |
[71] | Zhang Y, Li Z Q, Qie L L, et al. Retrieval of aerosol fine-mode fraction from intensity and polarization measurements by |
PARASOL over East Asia [J]. Remote Sensing, 2016, 8(5): 417. | |
[72] | Zhang Y, Li Z Q, Liu Z H, et al. Retrieval of the fine-mode aerosol optical depth over East China using a grouped residual error |
sorting (GRES) method from multi-angle and polarized satellite data [J]. Remote Sensing, 2018, 10(11): 1838. | |
[73] | Wang H, Sun X B, Yang L K, et al. Aerosol retrieval algorithm based on adaptive land-atmospheric decoupling for polarized |
remote sensing over land surfaces [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219: 74-84. | |
[74] | Wang H, Yang L K, Zhao M R, et al. The normalized difference vegetation index and angular variation of surface spectral |
polarized reflectance relationships: Improvements on aerosol remote sensing over land [J]. Earth and Space Science, 2019, | |
6( | 6): 982-989. |
[75] | Wang H, Zhao M R, Yang L K, et al. Retrieval of aerosol optical depth over North China from polarized satellite observations |
using Re-derived surface properties [J]. Earth and Space Science, 2019, 6(12): 2241-2250. | |
[76] | Dubovik O, Lapyonok T, Litvinov P, et al. GRASP: a versatile algorithm for characterizing the atmosphere [J]. SPIE Newsroom, 2014. |
[77] | Dubovik O, Holben B N, Kaufman Y J, et al. Single-scattering albedo of smoke retrieved from the sky radiance and solar |
transmittance measured from ground [J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D24): 31903-31923. | |
[78] | Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance |
measurements [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D16): 20673-20696. | |
[79] | Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic |
Network (AERONET) sun and sky radiance measurements [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D8): | |
97 | 91-9806. |
[80] | Li L, Che H Z, Derimian Y, et al. Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL |
observations over East and South Asia [J]. Remote Sensing of Environment, 2020, 247: 111913. | |
[81] | Fan C, Fu G L, Noia A D, et al. Use of a neural network-based ocean body radiative transfer model for aerosol retrievals from |
multi-angle polarimetric measurements [J]. Remote Sensing, 2019, 11(23): 2877. | |
[82] | Zheng Fengxun, Hou Weizhen, Li Zhengqiang. Optimal estimation retrieval for directional polarimetric camera onboard |
Chinese Gaofen-5 satellite: An analysis on multi-angle dependence and a posteriori error [J]. Acta Physica Sinica, 2019, 68(4): | |
04 | 0701. |
郑逢勋, 侯伟真, 李正强. 高分五号卫星多角度偏振相机最优化估计反演: 角度依赖与后验误差分析 [J]. 物理学报, | |
20 | 19, 68(4): 040701. |
[83] | Li Zhengqiang, Xie Yisong, Hong Jin, et al. Polarimetric satellite sensors for earth observation and applications in atmospheric |
remote sensing [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 2-17. | |
李正强, 谢一凇, 洪 津, 等. 星载对地观测偏振传感器及其大气遥感应用 [J]. 大气与环境光学学报, 2019, 14(1): 2-17. | |
[84] | Xie Yisong, Li Zhengqiang, Hou Weizhen, et al. Retrieval of fine-mode aerosol optical depth based on remote sensing measurements of directional polarimetric camera onboard GF-5 satellite [J]. Aerospace Shanghai, 2019, 36 (Sup 2): 219-226. |
谢一凇, 李正强, 侯伟真, 等. 高分五号卫星多角度偏振成像仪细粒子气溶胶光学厚度遥感反演 [J]. 上海航天, 2019, 36 | |
(增刊 2): 219-226. | |
[85] | Huang Honglian, Ti Rufang, Zhang Dongying, et al. Inversion of aerosol optical depth over land from directional polarimetric |
camera onboard Chinese Gaofen-5 satellite [J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 454-461. | |
黄红莲, 提汝芳, 张冬英, 等. 高分五号卫星偏振遥感陆地上空气溶胶光学厚度 [J]. 红外与毫米波学报, 2020, 39 (4): | |
45 | 4-461. |
[86] | Li Z Q, Hou WQZ, Hong J, et al. Directional polarimetric camera (DPC): Monitoring aerosol spectral optical properties over |
land from satellite observation [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 21-37. | |
[87] | Wang J, Xu X G, Ding S G, et al. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating |
retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146: 510-528. | |
[88] | Xu X G, Wang J. UNL-VRTM, A Testbed for Aerosol Remote Sensing: Model Developments and Applications [M]. |
Kokhanovsky A. A. Springer Series in Light Scattering. Berlin: Springer, 2019: 1-69. | |
[89] | Yu J, Li M Q, Wang Y L, et al. A decomposition method for large-scale box constrained optimization [J]. Applied Mathematics |
and Computation, 2014, 231: 9-15. | |
[90] | Byrd R H, Lu P H, Nocedal J, et al. A limited memory algorithm for bound constrained optimization [J]. SIAM Journal on |
Scientific Computing, 1995, 16(5): 1190-1208. | |
[91] | Litvinov P, Hasekamp O, Cairns B. Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements [J]. Remote Sensing of Environment, 2011, 115(2): 781-792. |
[92] | Maignan F, Breon F M, F ´ ed ´ ele E, ` et al. Polarized reflectances of natural surfaces: Spaceborne measurements and analytical |
modeling [J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650. | |
[93] | Xu X G, Wang J, Henze D K, et al. Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and |
evaluation with multisensor (OMI, MISR) data [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(12): 6396- | |
6413. | |
[94] | Zheng F X, Li Z Q, Hou W Z, et al. Aerosol retrieval study from multiangle polarimetric satellite data based on optimal |
estimation method [J]. Journal of Applied Remote Sensing, 2020, 14(01): 014516. | |
[95] | Ge B Y, Mei X D, Li Z Q, et al. An improved algorithm for retrieving high resolution fine-mode aerosol based on polarized |
satellite data: Application and validation for POLDER-3 [J]. Remote Sensing of Environment, 2020, 247: 111894. | |
[96] | Li Z Q, Zhang Y, Xu H, et al. The fundamental aerosol models over China region: A cluster analysis of the ground-based |
remote sensing measurements of total columnar atmosphere [J]. Geophysical Research Letters, 2019, 46(9): 4924– 4932. | |
[97] | Waquet F, Leon J F, Goloub P, ´ et al. Maritime and dust aerosol retrieval from polarized and multispectral active and passive |
sensors [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S10. | |
[98] | Waquet F, Goloub P, Deuze J L, ´ et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path |
radiance method [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11): D11214. | |
[99] | Wang H, Sun X B, Sun B, et al. Retrieval of aerosol optical properties over a vegetation surface using multi-angular, multispectral, and polarized data [J]. Advances in Atmospheric Sciences, 2014, 31(4): 879-887. |
[100] | Wang H, Yang L K, Deng A J, et al. Remote sensing of aerosol optical depth using an airborne polarimeter over North China |
[J] | Remote Sensing, 2017, 9(10): 979. |
[101] | Qie L L, Li Z Q, Sun X B, et al. Improving remote sensing of aerosol optical depth over land by polarimetric measurements |
at 1640 nm: Airborne test in North China [J]. Remote Sensing, 2015, 7(5): 6240-6256. | |
[102] | Waquet F, Cairns B, Knobelspiesse K, et al. Polarimetric remote sensing of aerosols over land [J]. Journal of Geophysical |
Research, 2009, 114(D1): D01206. | |
[103] | Wu L, Hasekamp O, van Diedenhoven B, et al. Aerosol retrieval from multiangle, multispectral photopolarimetric measurements: Importance of spectral range and angular resolution [J]. Atmospheric Measurement Techniques, 2015, 8(6): 2625-2638. |
[104] | Xu F, Dubovik O, Zhai P W, et al. Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and |
polarimetric measurements over ocean [J]. Atmospheric Measurement Techniques, 2016, 9(7): 2877-2907. | |
[105] | Xu F, van Harten G, Diner D J, et al. Coupled retrieval of aerosol properties and land surface reflection using the airborne |
multiangle spectropolarimetric imager [J]. Journal of Geophysical Research: Atmospheres, 2017, 122(13): 7004-7026. | |
[106] | Xu F, Diner D, Dubovik O, et al. A correlated multi-pixel inversion approach for aerosol remote sensing [J]. Remote Sensing, |
20 | 19, 11(7): 746. |
[107] | Puthukkudy A, Martins J V, Remer L A, et al. Retrieval of aerosol properties from airborne hyper-angular rainbow polarimeter |
(AirHARP) observations during ACEPOL 2017 [J]. Atmospheric Measurement Techniques, 2020, 13(10): 5207-5236. | |
[108] | Fu G L, Hasekamp O, Rietjens J, et al. Aerosol retrievals from different polarimeters during the ACEPOL campaign using a |
common retrieval algorithm [J]. Atmospheric Measurement Techniques, 2020, 13(2): 553-573. | |
[109] | Hou W Z, Wang J, Xu X G, et al. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical |
framework [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 178: 400-415. | |
[110] | Hou W Z, Wang J, Xu X G, et al. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis |
for aerosol parameters and principal components of surface spectra [J]. Journal of Quantitative Spectroscopy and Radiative | |
Transfer, 2017, 192: 14-29. | |
[111] | Hou W Z, Wang J, Xu X G, et al. An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO |
data in KORUS-AQ field campaign [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253: 107161. |
[1] | 张苗苗, 温渊, 朱思峰, 谢艳清, 李迎杰, 李云端, 洪津, 刘振海, 骆冬根, 宋茂新, 王羿 . 高光谱观测卫星偏振交火工程设计及在轨性能评估[J]. 大气与环境光学学报, 2023, 18(4): 295-309. |
[2] | 朱思峰, 朱梦瑶, 伽丽丽, 许华, 李正强, 谢一凇, 洪津, 涂碧海, 孟炳寰 . 高分五号 02 星多角度偏振成像仪在轨辐射性能初步评价[J]. 大气与环境光学学报, 2023, 18(4): 310-322. |
[3] | 董鉴韬, 李正强, 谢一凇, 樊程, 洪津, 戴刘新, 顾浩然, 郑杨 . 基于GF-5(02) 卫星DPC数据的2022年春季陆表细粒子气溶胶光学厚度空间分布[J]. 大气与环境光学学报, 2023, 18(4): 323-338. |
[4] | 翟颖超, 王涵, 赵梅如, 陈科, 李林森 . 山区气溶胶多角度偏振遥感地气解耦方法评估[J]. 大气与环境光学学报, 2023, 18(4): 339-356. |
[5] | 张苏贵, 张晶晶, 寻丽娜, 孙晓兵, 熊伟, 阎庆, 李穗 . 基于多模态融合的GF-5号遥感图像云检测[J]. 大气与环境光学学报, 2023, 18(4): 371-382. |
[6] | 阎庆, 叶孟孟, 张晶晶, 刘晓, 年福东, 李腾, . 基于预检机制的偏振图像去烟研究[J]. 大气与环境光学学报, 2023, 18(2): 108-118. |
[7] | 侯梦雨, 李正强∗, 谢一凇, 乔瑞, 谢艳清, 伽丽丽, 史正, . 国产卫星多角度偏振传感器的光谱特征云检测方法研究[J]. 大气与环境光学学报, 2022, 17(6): 598-612. |
[8] | 程璐璐, 施文杰, 夏 果∗, 王江涛, 陈巧芹, 金施群. 偏振氧A 带光谱气溶胶垂直剖面反演的信息量分析和灵敏度研究[J]. 大气与环境光学学报, 2022, 17(3): 360-368. |
[9] | 陈 标, 吴 东, ∗. 基于CALIOP 和MODIS 的北极地区海雾检测研究[J]. 大气与环境光学学报, 2022, 17(2): 267-278. |
[10] | 张馨丹, 李 雷∗, 陈 澄, 桂 柯, 郑 宇, 梁苑新, 要文瑞, 车慧正. 气溶胶组分反演方法光学辐射产品 精度的综合分析[J]. 大气与环境光学学报, 2022, 17(1): 160-170. |
[11] | 殷振平, 易 帆, ∗, 王 威, 何 芸, 柳付超, 张云鹏, 余长明, . 基于偏振激光雷达对远距离传输沙尘在局地混合过程的观测研究[J]. 大气与环境光学学报, 2021, 16(4): 299-306. |
[12] | 提汝芳∗, 黄红莲, 刘 晓, 樊依哲, 王佳佳, 孙晓兵, 洪 津, . 基于DPC 的中国部分区域陆地气溶胶光学厚度反演[J]. 大气与环境光学学报, 2021, 16(3): 239-246. |
[13] | 王佳佳, 孙晓兵∗, 提汝芳, 余海啸, . 海洋上空云多角度偏振辐射阈值检测方法研究[J]. 大气与环境光学学报, 2021, 16(3): 247-255. |
[14] | 曾献芳, 贾 镕, ∗, 王孙晨, 王荣昌, 任帅军, . 紫外偏振成像系统定标实验方法研究[J]. 大气与环境光学学报, 2021, 16(2): 138-148. |
[15] | 李佳欣, 赵 鹏, 方 薇∗, 宋尚香, . 基于深度学习的多角度遥感影像云检测方法[J]. 大气与环境光学学报, 2020, 15(5): 380-392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||