大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (6): 504-519.
朱晟男1, 李铸杰2, 马 嫣1, 戈逸峰1, 郑 军1∗
收稿日期:
2020-10-28
修回日期:
2021-08-29
出版日期:
2021-11-28
发布日期:
2021-11-28
通讯作者:
E-mail: zheng.jun@nuist.edu.cn
E-mail:zheng.jun@nuist.edu.cn
作者简介:
朱晟男 (1997 - ), 黑龙江佳木斯人, 硕士研究生, 主要从事大气颗粒物光学性质方面的研究。 E-mail: zsn5166@163.com
基金资助:
ZHU Shengnan1, LI Zhujie2, Ma Yan1, GE Yifeng1, ZHENG Jun1∗
Received:
2020-10-28
Revised:
2021-08-29
Published:
2021-11-28
Online:
2021-11-28
Contact:
Jun ZHENG
E-mail:zheng.jun@nuist.edu.cn
摘要: 黑碳 (BC) 和棕碳 (BrC) 是大气中重要的吸光物质。近年来, 大气棕碳光吸收贡献已成为国内外研究热点之 一。 2014 年青奥会期间在位于南京江心洲的南京市气象局, 利用三波长光声黑碳光度仪 (PASS-3), 热熔蚀器 (TD), 气 溶胶质量分析仪 (APM), 扫描电迁移率粒径谱仪 (SMPS) 和空气动力学粒径谱仪 (APS) 进行了大气实时观测。基于 Mie 模型和 AAE 方法, 计算得出 BrC 在 405 nm 和 532 nm 处的平均光吸收系数分别为 (8.5±4.5) Mm−1 和 (3.2±2.1) Mm−1, 相应的平均光吸收贡献分别为 (22.7±12.0)% 和 (13.6±9.2)%, 说明 BrC 的光吸收能力具有波长依赖性。进而对 核-壳和外混两种模型中 αBC 随复折射指数变化做了敏感性分析。在这两种模型中, αBC 均对 BC 核复折射指数虚部最 为敏感, 其次是 BC 核复折射指数的实部; 不同的是, 在外混模型中非吸光物质复折射指数实部的改变不会影响 αBC。
中图分类号:
朱晟男, 李铸杰, 马 嫣, 戈逸峰, 郑 军∗. 南京青奥会期间棕碳对大气颗粒物光吸收贡献研究[J]. 大气与环境光学学报, 2021, 16(6): 504-519.
ZHU Shengnan, LI Zhujie, Ma Yan, GE Yifeng, ZHENG Jun∗. Contribution of Brown Carbon to Light Absorption of Atmospheric Particles During Nanjing Youth Olympic Games[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(6): 504-519.
[1] | Kirchstetter T W, Novakov T, Hobbs P V. Evidence that the spectral dependence of light absorption by aerosols is affected by |
organic carbon [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D21): D21208. | |
[2] | Olson M R, Victoria Garcia M, Robinson M A, et al. Investigation of black and brown carbon multiple-wavelength-dependent |
light absorption from biomass and fossil fuel combustion source emissions [J]. Journal of Geophysical Research: Atmospheres, | |
20 | 15, 120(13): 6682-6697. |
[3] | Yan Caiqing, Zheng Mei, Zhang Yuanhang. Research progress and direction of atmospheric brown carbon [J]. Environmental |
Science, 2014, 35(11): 4404-4414. | |
闫才青, 郑 玫, 张远航. 大气棕色碳的研究进展与方向 [J]. 环境科学, 2014, 35(11): 4404-4414. | |
[4] | Bergstrom R W, Pilewskie P, Russell P B, et al. Spectral absorption properties of atmospheric aerosols [J]. Atmospheric |
Chemistry and Physics, 2007, 7(23): 5937-5943. | |
[5] | Poschl U. Aerosol particle analysis: Challenges and progress [J]. ¨ Analytical and Bioanalytical Chemistry, 2003, 375(1): 30-32. |
[6] | Chakrabarty R K, Moosmüller H, Chen L W A, et al. Brown carbon in tar balls from smoldering biomass combustion [J]. |
Atmospheric Chemistry and Physics, 2010, 10(13): 6363-6370. | |
[7] | Krivacsy Z, Kiss G, Varga B, ´ et al. Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis [J]. Atmospheric Environment, 2000, 34(25): 4273-4281. |
[8] | Andreae M O, Gelencser A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols [J]. ´ Atmospheric Chemistry and Physics, 2006, 6(10): 3131-3148. |
[9] | Zhi Guorui, Cai Jing, Yang Junchao, et al. Origin, properties, measurement and emission estimation of brown carbon aerosols |
[J] | Research of Environmental Sciences, 2015, 28(12): 1797-1814. |
支国瑞, 蔡 竟, 杨俊超, 等. 棕色碳气溶胶来源、性质、测量与排放估算 [J]. 环境科学研究, 2015, 28(12): 1797-1814. | |
[10] | Cheng Y, He K B, Zheng M, et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, |
China [J]. Atmospheric Chemistry and Physics, 2011, 11(22): 11497-11510. | |
[11] | Bond T C, Bussemer M, Wehner B, et al. Light absorption by primary particle emissions from a lignite burning plant [J]. |
Environmental Science and Technology, 1999, 33(21): 3887-3891. | |
[12] | Liu J, Scheuer E, Dibb J, et al. Brown carbon aerosol in the North American continental troposphere: Sources, abundance, and |
radiative forcing [J]. Atmospheric Chemistry and Physics, 2015, 15(14): 7841-7858. | |
[13] | Yan C, Zheng M, Bosch C, et al. Important fossil source contribution to brown carbon in Beijing during winter [J]. Scientific |
Reports, 2017, 7: 43182. | |
[14] | Moise T, Flores J M, Rudich Y. Optical properties of secondary organic aerosols and their changes by chemical processes [J]. |
Chemical Reviews, 2015, 115(10): 4400-4439. | |
[15] | Laskin A, Laskin J, Nizkorodov S A. Chemistry of atmospheric brown carbon [J]. Chemical Reviews, 2015, 115(10): 4335- |
4382. | |
[16] | Zhang Hua, Huang Jianping. Interpretation of the IPCC fifth assessment report on anthropogenic and natural radiative forcing |
[J] | Progressus Inquisitiones DE Mutatione Climatis, 2014, 10(1): 40-44. |
张 华, 黄建平. 对 IPCC 第五次评估报告关于人为和自然辐射强迫的解读 [J]. 气候变化研究进展, 2014, 10(1): 40-44. | |
[17] | Bahadur R, Praveen P S, Xu Y, et al. Solar absorption by elemental and brown carbon determined from spectral observations |
[J] | Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17366-17371. |
[18] | Alexander D T L, Crozier P A, Anderson J R. Brown carbon spheres in east Asian outflow and their optical properties [J]. |
Science, 2008, 321(5890): 833-836. | |
[19] | Feng Y, Ramanathan V, Kotamarthi V R. Brown carbon: A significant atmospheric absorber of solar radiation? [J]. Atmospheric |
Chemistry and Physics, 2013, 13(17): 8607-8621. | |
[20] | Hecobian A, Zhang X, Zheng M, et al. Water-soluble organic aerosol material and the light-absorption characteristics of |
aqueous extracts measured over the Southeastern United States [J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5965- | |
5977. | |
[21] | Satish R, Shamjad P, Thamban N, et al. Temporal characteristics of brown carbon over the central Indo-Gangetic plain [J]. |
Environmental Science & Technology, 2017, 51(12): 6765-6772. | |
[22] | Shen Z X, Zhang Q, Cao J J, et al. Optical properties and possible sources of brown carbon in PM2:5 over Xi′an, China [J]. |
Atmospheric Environment, 2017, 150: 322-330. | |
[23] | Drinovec L, Mocnik G, Zotter P, ˇ et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with |
real-time loading compensation [J]. Atmospheric Measurement Techniques, 2015, 8(5): 1965-1979. | |
[24] | Weingartner E, Saathoff H, Schnaiter M, et al. Absorption of light by soot particles: Determination of the absorption coefficient |
by means of aethalometers [J]. Journal of Aerosol Science, 2003, 34(10): 1445-1463. | |
[25] | Wang J P, Nie W, Cheng Y F, et al. Light absorption of brown carbon in Eastern China based on 3-year multi-wavelength |
aerosol optical property observations and an improved absorption Ångstrom exponent segregation method [J]. ¨ Atmospheric | |
Chemistry and Physics, 2018, 18(12): 9061-9074. | |
[26] | Yuan J F, Huang X F, Cao L M, et al. Light absorption of brown carbon aerosol in the PRD region of China [J]. Atmospheric |
Chemistry and Physics, 2016, 16(3): 1433-1443. | |
[27] | Li Z J, Tan H B, Zheng J, et al. Light absorption properties and potential sources of particulate brown carbon in the Pearl River |
Delta region of China [J]. Atmospheric Chemistry and Physics, 2019, 19(18): 11669-11685. | |
[28] | Pagels J, Khalizov A F, McMurry P H, et al. Processing of soot by controlled sulphuric acid and water condensation-mass and |
mobility relationship [J]. Aerosol Science and Technology, 2009, 43(7): 629-640. | |
[29] | Tan H B, Liu L, Fan S J, et al. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China [J]. |
Atmospheric Environment, 2016, 131: 196-208. | |
[30] | Cheng Y F, Eichler H, Wiedensohler A, et al. Mixing state of elemental carbon and non-light-absorbing aerosol components |
derived from in situ particle optical properties at Xinken in Pearl River Delta of China [J]. Journal of Geophysical Research: | |
Atmospheres, 2006, 111(D20): D20204. | |
[31] | Cheng Yafang, Zhang Yuanhang, Hu Min. Observation-based Method for Investigating the Atmospheric Aerosol Radiative |
Properties in Pearl River Delta of China [M]. Beijing: Science Press, 2008. | |
程雅芳, 张远航, 胡 敏. 珠江三角洲大气气溶胶辐射特性 [M]. 北京: 科学出版社, 2008. | |
[32] | Ma Y, Huang C C, Jabbour H, et al. Mixing state and light absorption enhancement of black carbon aerosols in summertime |
Nanjing, China [J]. Atmospheric Environment, 2020, 222: 117141. | |
[33] | McMurry P H, Wang X, Park K, et al. The relationship between mass and mobility for atmospheric particles: A new technique |
for measuring particle density [J]. Aerosol Science and Technology, 2002, 36(2): 227-238. | |
[34] | Ma N, Zhao C S, Müller T, et al. A new method to determine the mixing state of light absorbing carbonaceous using the |
measured aerosol optical properties and number size distributions [J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2381- | |
2397. | |
[35] | Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles [M]. Weinheim, Germany: Wiley-VCH |
Verlag GmbH, 2007: 499-519. | |
[36] | D′almeida G A, Koepke P, Shettle E P. Atmospheric Aerosols: Global Climatology and Radiative Characteristics [M]. Hampton, VA : A Deepak Pub, 1991. |
[37] | Yang M, Howell S G, Zhuang J, et al. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in |
China-interpretations of atmospheric measurements during EAST-AIRE [J]. Atmospheric Chemistry and Physics, 2009, 9(6): | |
20 | 35-2050. |
[38] | Martinsson J, Eriksson A C, Nielsen I E, et al. Impacts of combustion conditions and photochemical processing on the light |
absorption of biomass combustion aerosol [J]. Environmental Science & Technology, 2015, 49(24): 14663-14671. | |
[39] | Lack D A, Cappa C D. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption |
wavelength dependence of black carbon [J]. Atmospheric Chemistry and Physics, 2010, 10(9): 4207-4220. | |
[40] | Liu D, Allan J D, Young D E, et al. Size distribution, mixing state and source apportionment of black carbon aerosol in London |
during wintertime [J]. Atmospheric Chemistry and Physics, 2014, 14(18): 10061-10084. | |
[41] | Liu D T, Taylor J W, Young D E, et al. The effect of complex black carbon microphysics on the determination of the optical |
properties of brown carbon [J]. Geophysical Research Letters, 2015, 42(2): 613-619. | |
[42] | Liu C, Chung C E, Yin Y, et al. The absorption Ångstrom exponent of black carbon: From numerical aspects [J]. ¨ Atmospheric |
Chemistry and Physics, 2018, 18(9): 6259-6273. | |
[43] | Lack D A, Langridge J M. On the attribution of black and brown carbon light absorption using the Ångstrom exponent [J]. ¨ |
Atmospheric Chemistry and Physics, 2013, 13(20): 10535-10543. | |
[44] | Moosmuller H, Chakrabarty R K, Ehlers K M, ¨ et al. Absorption Ångstrom coe ¨ fficient, brown carbon, and aerosols: Basic |
concepts, bulk matter, and spherical particles [J]. Atmospheric Chemistry and Physics, 2011, 11(3): 1217-1225. | |
[45] | Gyawali M, Arnott W P, Lewis K, et al. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California |
wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption [J]. Atmospheric | |
Chemistry and Physics, 2009, 9(20): 8007-8015. | |
[46] | Cheung H H Y, Tan H B, Xu H B, et al. Measurements of non-volatile aerosols with a VTDMA and their correlations with |
carbonaceous aerosols in Guangzhou, China [J]. Atmospheric Chemistry and Physics, 2016, 16(13): 8431-8446. | |
[47] | Qiu Y Q, Wu X, Zhang Y R, et al. Aerosol light absorption in a coastal city in Southeast China: Temporal variations and |
implications for brown carbon [J]. Journal of Environmental Sciences, 2019, 80: 257-266. | |
[48] | Peng C, Yang F M, Tian M, et al. Brown carbon aerosol in two megacities in the Sichuan Basin of southwestern China: Light |
absorption properties and implications [J]. Science of the Total Environment, 2020, 719: 137483. | |
[49] | Zhang Y, Li Z Q, Sun Y L, et al. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote |
sensing measurements of aerosol spectral refractive indices [J]. Atmospheric Environment, 2018, 179: 107-117. | |
[50] | Redmond H, Thompson J E. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible |
refractive index of secondary organic aerosol (SOA) [J]. Physical Chemistry Chemical Physics, 2011, 13(15): 6872-6882. | |
[51] | Erlick C, Abbatt J P D, Rudich Y. How different calculations of the refractive index affect estimates of the radiative forcing |
efficiency of ammonium sulfate aerosols [J]. Journal of the Atmospheric Sciences, 2011, 68(9): 1845-1852. | |
[52] | Schuster G L, Dubovik O, Holben B N, et al. Inferring black carbon content and specific absorption from aerosol robotic |
network (AERONET) aerosol retrievals [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S17. |
[1] | 冯仕凌, 崔 琪, 郭心骞, 邱选兵, 郭古青, 和小虎, 李传亮∗. 小波降噪对TDLAS 干涉抑制的研究[J]. 大气与环境光学学报, 2022, 17(3): 328-335. |
[2] | 李 坤∗, 王炜罡, 杜 林, 葛茂发, . 芳香化合物生成二次有机气溶胶的 光学性质研究进展[J]. 大气与环境光学学报, 2022, 17(1): 29-44. |
[3] | 陈海彪, 闫才青, ∗, 王新锋, 杜 林, 刘久萌, 程 远, 郑 玫. 大气棕碳气溶胶吸光特性影响因素的研究进展[J]. 大气与环境光学学报, 2022, 17(1): 45-64. |
[4] | 朱 鑫, 陈庆彩∗, 王擎雯, 李锦雯, 程静雯, 郎涵睿, 王茂颖. 西安市大气颗粒物中棕碳的吸光性研究[J]. 大气与环境光学学报, 2022, 17(1): 125-134. |
[5] | 彭 超, 陈 阳∗, 杨复沫, 田 密, 翟崇治, . 重庆市棕碳气溶胶吸光特性及其影响因素研究[J]. 大气与环境光学学报, 2022, 17(1): 135-147. |
[6] | 刘强强, 朱宏历, 郭古青, 王泽育, 冯仕凌, 邱选兵, 何秋生, 李传亮∗. 基于中红外量子级联激光器的SO2 和SO3 检测研究[J]. 大气与环境光学学报, 2021, 16(5): 424-431. |
[7] | 周变红, ∗, 曹 夏, 冯 瞧, 王 锦, 张容端, 刘雅雯, 杨震龙, 刘文霞, 王 勇, 李建军. 宝鸡市一次污染过程黑碳气溶胶的变化特征及潜在源解析[J]. 大气与环境光学学报, 2021, 16(4): 331-338. |
[8] | 彭于权1,2,阚瑞峰1,许振宇1,夏晖晖1,聂伟1,2,张步强1,2, 裴晓凡1. 基于可调谐半导体激光吸收光谱技术的甲烷/空气预混平焰炉温度测量[J]. 大气与环境光学学报, 2019, 14(3): 228-234. |
[9] | 杨旭 刘霖 李金义 杜振辉 张哲远. 基于中红外DFB-ICL的氨气传感器设计[J]. 大气与环境光学学报, 2017, 12(6): 411-419. |
[10] | 王雪梅 刘石. 基于波长调制光谱技术的二氧化碳浓度测量[J]. 大气与环境光学学报, 2017, 12(5): 356-361. |
[11] | 信丰鑫 郭金家 孙加运 马玲 李杰 夏晖晖 刘继桥 刘智深. 基于可调谐半导体激光吸收光谱技术对开放式长光程大气CO2的测量[J]. 大气与环境光学学报, 2017, 12(4): 269-275. |
[12] | 袁松 阚瑞峰 姚路 陈玖英 李晗 许振宇. 基于可调谐半导体激光吸收光谱对CO2浓度的测量[J]. 大气与环境光学学报, 2012, (6): 432-437. |
[13] | 田明丽 涂郭结 王煜 庞涛 张志荣 吴边 夏滑 董凤忠. 用于工业气体在线测量的VCSEL恒流驱动电路设计[J]. 大气与环境光学学报, 2012, (4): 310-. |
[14] | 高伟,陈卫东,张为俊,高晓明. 1.65mmCH4低温吸收光谱特性研究[J]. 大气与环境光学学报, 2012, 7(1): 13-17. |
[15] | 耿辉,张玉钧,刘文清,刘建国,阮俊,许振宇,姚路,阚瑞峰. 酒精蒸汽近红外高分辨光谱获取方法研究[J]. 大气与环境光学学报, 2012, 7(1): 57-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||