大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (1): 92-103.
周家成1;2, 徐学哲1, 方 波1, 张 杨1, 赵卫雄1∗, 张为俊1;3
收稿日期:
2021-09-27
修回日期:
2021-10-29
出版日期:
2022-01-28
发布日期:
2022-01-28
通讯作者:
E-mail: wxzhao@aiofm.ac.cn
E-mail:wxzhao@aiofm.ac.cn
作者简介:
周家成 (1996 - ), 安徽涡阳人, 博士研究生, 主要从事气溶胶光学特性方面的研究。 E-mail: 1406752614@qq.com
基金资助:
ZHOU Jiacheng1;2, XU Xuezhe1, FANG Bo1, ZHANG Yang1, ZHAO Weixiong1∗, ZHANG Weijun1;3
Received:
2021-09-27
Revised:
2021-10-29
Published:
2022-01-28
Online:
2022-01-28
摘要: 吸湿性气溶胶会吸收环境空气中的水分, 其粒径会随相对湿度的增加而发生变化, 从而导致气溶胶的光学特 性 (如消光、散射、吸收系数与单次散射反照率等) 发生显著的变化。气溶胶光学吸湿增长因子 (湿状态与干状态下 光学参数的比值) 是衡量气溶胶光学吸湿增长能力的特征参数, 是计算大气能见度和气溶胶辐射强迫的关键输入量, 它的准确测量对于气溶胶环境和气候效应的评估具有重要意义。光学吸湿增长测量系统主要包括湿度调节系统和光 学测量装置, 通过湿度调节系统改变样品的相对湿度, 再结合光学测量装置实时测量光学参数的变化, 从而实现光学 吸湿特性的在线测量。鉴于气溶胶吸湿性研究的重要意义, 重点分析对比了现有的光学吸湿增长测量方法及应用, 并 对下一步气溶胶光学吸湿增长特性测量技术和研究方向做了展望。
中图分类号:
周家成, 徐学哲, 方 波, 张 杨, 赵卫雄∗, 张为俊, . 气溶胶光学吸湿增长特性测量方法研究进展[J]. 大气与环境光学学报, 2022, 17(1): 92-103.
ZHOU Jiacheng, XU Xuezhe, FANG Bo, ZHANG Yang, ZHAO Weixiong∗, ZHANG Weijun, . Research progress of methods of aerosol optical hygroscopic properties measurement[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 92-103.
[1] | Tang X Y, Zhang Y H, Shao M. Atmospheric Environmental Chemistry (Second Edition) [M]. Beijing: Higher Education |
Press, 2006. | |
唐孝炎, 张远航, 邵 敏. 大气环境化学 (第二版) [M]. 北京: 高等教育出版社, 2006. | |
[2] | Nel A. Air pollution-related illness: Effects of particles [J]. Science, 2005, 308(5723): 804-806. |
[3] | Stocker T F, Qin D, Plattner G K, et al. IPCC. In Climate Change 2013-The Physical Science Basis, Contribution of Working |
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge | |
University Press, 2013. | |
[4] | Covert D S, Charlson R J, Ahlquist N C. A study of the relationship of chemical composition and humidity to light scattering |
by aerosols [J]. Journal of Applied Meteorology, 1972, 11(6): 968-976. | |
[5] | Tang I N, Munkelwitz H R. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of |
atmospheric importance [J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D9): 18801-18808. | |
[6] | Zhang R, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during |
atmospheric processing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30): | |
10 | 291-10296. |
[7] | Khalizov A F, Xue H, Wang L, et al. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with |
sulfuric acid [J]. The Journal of Physical Chemistry A, 2009, 113(6): 1066-1074. | |
[8] | Xue H X, Khalizov A F, Wang L, et al. Effects of dicarboxylic acid coating on the optical properties of soot [J]. Physical |
Chemistry Chemical Physics, 2009, 11(36): 7869-7875. | |
[9] | Liu X G, Zhang Y H, Cheng Y F, et al. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing |
in Guangzhou during the 2006 PRIDE-PRD campaign [J]. Atmospheric Environment, 2012, 60: 59-67. | |
[10] | Cheng Y F, Wiedensohler A, Eichler H, et al. Relative humidity dependence of aerosol optical properties and direct radiative |
forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study [J]. | |
Atmospheric Environment, 2008, 42(25): 6373-6397. | |
[11] | Garland R M, Ravishankara A R, Lovejoy E R, et al. Parameterization for the relative humidity dependence of light extinction: |
Organic-ammonium sulfate aerosol [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D19): D19303. | |
[12] | Zieger P, Fierz-Schmidhauser R, Weingartner E, et al. Effects of relative humidity on aerosol light scattering: Results from |
different European sites [J]. Atmospheric Chemistry and Physics, 2013, 13(21): 10609-10631. | |
[13] | Lack D A, Quinn P K, Massoli P, et al. Relative humidity dependence of light absorption by mineral dust after long-range |
atmospheric transport from the Sahara [J]. Geophysical Research Letters, 2009, 36(24): L24805. | |
[14] | Zhou J C, Xu X Z, Zhao W X, et al. Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, |
scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer [J]. Atmospheric Measurement Techniques, 2020, 13(5): 2623-2634. | |
[15] | Zhang L, Sun J Y, Shen X J, et al. Observations of relative humidity effects on aerosol light scattering in the Yangtze River |
Delta of China [J]. Atmospheric Chemistry and Physics, 2015, 15(14): 8439-8454. | |
[16] | Tang M J, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud |
condensation, and ice nucleation [J]. Chemical Reviews, 2016, 116(7): 4205-4259. | |
[17] | Tang M J, Chan C K, Li Y J, et al. A review of experimental techniques for aerosol hygroscopicity studies [J]. Atmospheric |
Chemistry and Physics, 2019, 19(19): 12631-12686. | |
[18] | Zhao C S, Yu Y L, Kuang Y, et al. Recent progress of aerosol light-scattering enhancement factor studies in China [J]. Advances |
in Atmospheric Sciences, 2019, 36(9): 1015-1026. | |
[19] | Gu W J, Li Y J, Zhu J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using |
a commercial vapor sorption analyzer [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832. | |
[20] | Zheng X H, Hu C J, Pan G, et al. Hygroscopicity of SOA formed by ozonolysis of styrene [J]. Journal of Atmospheric and |
Environmental Optics, 2012, 7(4): 254-262. | |
郑晓宏, 胡长进, 潘 刚, 等. 苯乙烯-臭氧反应产生的二次有机气溶胶的吸湿性研究 [J]. 大气与环境光学学报, 2012, 7(4): | |
25 | 4-262. |
[21] | Qian X D, Zhang Q L, Xu X Z, et al. Development of a volatility hygroscopic tandem differential mobility analyzer (VHTDMA) for the measurement of aerosol thermal and hygroscopic properties [J]. China Environmental Science, 2017, 37(4): |
12 | 69-1275. |
钱小东, 张启磊, 徐学哲, 等. 气溶胶吸湿和挥发特性测量的 VH-TDMA 装置研究 [J]. 中国环境科学, 2017, 37(4): | |
69-1275. | |
[22] | Zhang L. Observation and Model Study of Relative Humidity Effects on Aerosol Light Scattering at a Regional Backgound |
Site in the Yangtze Delta Region [D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
张 璐. 长三角背景区域相对湿度对大气气溶胶散射特征影响的观测与模拟研究 [D]. 北京: 中国科学院大学, 2017. | |
[23] | Liu H J, Zhao C S. Design of a humidified nephelometer system with high time resolution [J]. Acta Scientiarum Naturalium |
Universitatis Pekinensis, 2016, 52(6): 999-1004. | |
刘宏剑, 赵春生. 高时间分辨率加湿浊度计系统设计研究 [J]. 北京大学学报 (自然科学版), 2016, 52(6): 999-1004. | |
[24] | Chen J, Zhao C S, Ma N, et al. Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain [J]. Atmospheric Chemistry and Physics, 2014, 14(15): 8105-8118. |
[25] | Fierz-Schmidhauser R, Zieger P, Wehrle G, et al. Measurement of relative humidity dependent light scattering of aerosols [J]. |
Atmospheric Measurement Techniques, 2010, 3(1): 39-50. | |
[26] | Brem B T, Mena Gonzalez F C, Meyers S R, et al. Laboratory-measured optical properties of inorganic and organic aerosols |
at relative humidities up to 95% [J]. Aerosol Science and Technology, 2012, 46(2): 178-190. | |
[27] | Baynard T, Garland R M, Ravishankara A R, et al. Key factors influencing the relative humidity dependence of aerosol light |
scattering [J]. Geophysical Research Letters, 2006, 33(6): L06813. | |
[28] | Massoli P, Bates T S, Quinn P K, et al. Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their |
impact on aerosol direct radiative forcing [J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D00F07. | |
[29] | Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown |
spectroscopy [J]. Aerosol Science and Technology, 2011, 45(11): 1305-1318. | |
[30] | Michel Flores J, Bar-Or R Z, Bluvshtein N, et al. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to |
optical properties [J]. Atmospheric Chemistry and Physics, 2012, 12(12): 5511-5521. | |
[31] | Zhao W, Xu X, Fang B, et al. Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and |
its application to measurement of aerosol optical hygroscopicity [J]. Applied Optics, 2017, 56(11): E16-E22. | |
[32] | Carrico C M, Rood M J, Ogren J A, et al. Aerosol optical properties at Sagres, Portugal during ACE-2 [J]. Tellus B, 2000, |
52 | (2): 694-715. |
[33] | Yan P, Pan X L, Tang J, et al. Hygroscopic growth of aerosol scattering coefficient: A comparative analysis between urban and |
suburban sites at winter in Beijing [J]. Particuology, 2009, 7(1): 52-60. | |
[34] | Sun J Y, Zhang L, Shen X J, et al. A review of the effects of relative humidity on aerosol scattering properties [J]. Acta |
Meteorologica Sinica, 2016, 74(5): 672-682. | |
孙俊英, 张 璐, 沈小静, 等. 大气气溶胶散射吸湿增长特性研究进展 [J]. 气象学报, 2016, 74(5): 672-682. | |
[35] | Titos G, Cazorla A, Zieger P, et al. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of |
measurements, techniques and error sources [J]. Atmospheric Environment, 2016, 141: 494-507. | |
[36] | Pan X L, Yan P, Tang J, et al. Observational study of influence of aerosol hygroscopic growth on scattering coefficient over |
rural area near Beijing mega-city [J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7519-7530. | |
[37] | Tao J C, Zhao C S, Kuang Y, et al. A new method for calculating number concentrations of cloud condensation nuclei based |
on measurements of a three-wavelength humidified nephelometer system [J]. Atmospheric Measurement Techniques, 2018, | |
11 | (2): 895-906. |
[38] | Kuang Y, Zhao C S, Tao J C, et al. A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system [J]. Atmospheric Chemistry and Physics, 2017, 17(11): 6651-6662. |
[39] | Zhao G, Zhao C S, Kuang Y, et al. Calculating the aerosol asymmetry factor based on measurements from the humidified |
nephelometer system [J]. Atmospheric Chemistry and Physics, 2018, 18(12): 9049-9060. | |
[40] | Kuang Y, Zhao C S, Zhao G, et al. A novel method for calculating ambient aerosol liquid water content based on measurements |
of a humidified nephelometer system [J]. Atmospheric Measurement Techniques, 2018, 11(5): 2967-2982. | |
[41] | Kuang Y, Tao J C, Xu W Y, et al. Calculating ambient aerosol surface area concentrations using aerosol light scattering |
enhancement measurements [J]. Atmospheric Environment, 2019, 216: 116919. | |
[42] | Arnott W P, Moosmuller H, Sheridan P J, ¨ et al. Photoacoustic and filter-based ambient aerosol light absorption measurements: |
Instrument comparisons and the role of relative humidity [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D1): | |
4034. | |
[43] | Langridge J M, Richardson M S, Lack D A, et al. Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity [J]. Aerosol Science and Technology, 2013, 47(11): 1163-1173. |
[44] | Radney J G, Zangmeister C D. Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using |
supercontinuum photoacoustic spectroscopy [J]. Analytical Chemistry, 2015, 87(14): 7356-7363. | |
[45] | Thompson J E, Barta N, Policarpio D, et al. A fixed frequency aerosol albedometer [J]. Optics Express, 2008, 16(3): 2191- |
2205. | |
[46] | Zhao W, Xu X, Dong M, et al. Development of a cavity-enhanced aerosol albedometer [J]. Atmospheric Measurement Techniques, 2014, 7(8): 2551-2566. |
[47] | Xu X Z, Zhao W X, Fang B, et al. Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical |
properties and single-scattering albedo of aerosols [J]. Optics Express, 2018, 26(25): 33484-33500. | |
[48] | Onasch T B, Massoli P, Kebabian P L, et al. Single scattering albedo monitor for airborne particulates [J]. Aerosol Science and |
Technology, 2015, 49(4): 267-279. | |
[49] | Wei Y, Ma L, Cao T, et al. Light scattering and extinction measurements combined with laser-induced incandescence for the |
real-time determination of soot mass absorption cross section [J]. Analytical Chemistry, 2013, 85(19): 9181-9188. | |
[50] | Carrico C M, Capek T J, Gorkowski K J, et al. Humidified single-scattering albedometer (H-CAPS-PMSSA): Design, data |
analysis, and validation [J]. Aerosol Science and Technology, 2021, 55(7): 749-768. | |
[51] | Markowicz K M, Flatau P J, Quinn P K, et al. Influence of relative humidity on aerosol radiative forcing: An ACE-Asia |
experiment perspective [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D23): 8662. |
[1] | 董鉴韬, 李正强, 谢一凇, 樊程, 洪津, 戴刘新, 顾浩然, 郑杨 . 基于GF-5(02) 卫星DPC数据的2022年春季陆表细粒子气溶胶光学厚度空间分布[J]. 大气与环境光学学报, 2023, 18(4): 323-338. |
[2] | 翟颖超, 王涵, 赵梅如, 陈科, 李林森 . 山区气溶胶多角度偏振遥感地气解耦方法评估[J]. 大气与环境光学学报, 2023, 18(4): 339-356. |
[3] | 顾浩然, 李正强, 侯伟真, 裘桢炜, 刘振海, 朱军, 伽丽丽, 罗杰, 洪津, 麻金继 . 紫外多角度偏振探测气溶胶层高的信息量分析初步研究[J]. 大气与环境光学学报, 2023, 18(4): 357-370. |
[4] | 孙二昌, 麻金继, 吴文涵, 杨光, 郭金雨, . Himawari-8气溶胶变分同化对PM2.5污染模拟的改进[J]. 大气与环境光学学报, 2023, 18(1): 59-72. |
[5] | 汪惜今, 徐青山, 范传宇, 程晨, 戚鹏, 徐赤东 . 激光雷达探测整层大气昼夜气溶胶光学厚度[J]. 大气与环境光学学报, 2023, 18(1): 14-24. |
[6] | 黄冬, 李新, 张艳娜, 张允祥 . 全自动太阳光度计温控系统设计及测试[J]. 大气与环境光学学报, 2023, 18(1): 73-81. |
[7] | 许健, 饶兰兰, DOICU Adrian, 胡斯勒图∗, 秦凯∗. 基于氧气A 带的高光谱卫星气溶胶层高优化反演[J]. 大气与环境光学学报, 2022, 17(6): 630-639. |
[8] | 王雪林, 陈文忠∗. 亚北极太平洋气溶胶光学厚度与净初级生产力的变化特征及其相关性研究[J]. 大气与环境光学学报, 2022, 17(5): 558-569. |
[9] | 陈玉宽, 王 朔, 徐学哲, 赵卫雄, 盖艳波, 方 波, 张为俊, ∗. 安徽省寿县气溶胶消光系数变化特征分析[J]. 大气与环境光学学报, 2022, 17(5): 533-541. |
[10] | 蔡振锋, 李 丁∗, 黄海虹. 2021 年春季沙尘传输对徐州地区气溶胶演变影响分析[J]. 大气与环境光学学报, 2022, 17(4): 409-419. |
[11] | 程璐璐, 施文杰, 夏 果∗, 王江涛, 陈巧芹, 金施群. 偏振氧A 带光谱气溶胶垂直剖面反演的信息量分析和灵敏度研究[J]. 大气与环境光学学报, 2022, 17(3): 360-368. |
[12] | 陈 标, 吴 东, ∗. 基于CALIOP 和MODIS 的北极地区海雾检测研究[J]. 大气与环境光学学报, 2022, 17(2): 267-278. |
[13] | 赵 锋, 冯亚娟∗. 2-甲基甘油酸-硫酸/甲磺酸团簇的大气物化特性研究[J]. 大气与环境光学学报, 2022, 17(2): 213-219. |
[14] | 姜晓彤, 杜 林∗. 环境因素影响二次有机气溶胶生成的研究进展[J]. 大气与环境光学学报, 2022, 17(1): 3-15. |
[15] | 项 往, 王炜罡, ∗, 张文玉, 葛茂发, ∗, 李 坤. 二次有机气溶胶光学特性研究进展[J]. 大气与环境光学学报, 2022, 17(1): 16-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||