大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (3): 304-316.
杜 娟1;2, 刘春琼3, 吴 波1, 张 娇1, 黄 毅1, 史 凯3∗
收稿日期:
2020-07-21
修回日期:
2022-03-27
出版日期:
2022-05-28
发布日期:
2022-05-28
通讯作者:
E-mail: shikai@jsu.edu.cn
作者简介:
杜 娟 (1995 - ), 女, 贵州铜仁人, 硕士研究生, 主要从事应用统计方面的研究。 E-mail: dumin0014@163.com
基金资助:
DU Juan1;2, LIU Chunqiong3, WU Bo1, ZHANG Jiao1, HUANG Yi1, SHI Kai3∗
Received:
2020-07-21
Revised:
2022-03-27
Published:
2022-05-28
Online:
2022-05-28
摘要: 为解析长株潭地区 PM2:5 演化的多尺度特征, 阐释其演化的主要动力机制, 提出了一种集合经验模态分解 (EEMD) 和多重分形消除趋势波动分析 (MFDFA) 的新模型, 研究了该区域 2015 年 1 月 1 日至 2019 年 12 月 31 日 PM2:5 浓度的动力演化。利用 EEMD 方法获得了各城市 PM2:5 的高频模态以及趋势项, 趋势项结果表明 PM2:5 浓度呈 下降趋势, 而 PM2:5 的高频模态反映了 PM2:5 浓度波动的非线性特征。进一步采用 MFDFA 方法对其高频累加模态进 行分析, 研究表明 PM2:5 高频分量存在较强的多重分形特征。此外, 还利用相位随机替代法和随机重构法研究了其多 重分形的主要来源, 结果表明 PM2:5 浓度波动在不同时间尺度内的长期持续作用是造成高浓度 PM2:5 污染涌现的主要 动力因素。最后, 讨论了气象条件对其高频分量多重分形强度的影响, 结果发现, 相对于其他季节, 冬季 PM2:5 高频模 态的多重分形强度更强。分析表明, 尽管该区域通过大气污染行动计划已取得积极的污染控制效果, 但在冬季, 污染 物演化的长期持续动力机制对 PM2:5 高频模态的演化发挥着更加主导的控制作用, 不同时间尺度上 PM2:5 非线性长期 持续动力机制导致冬季仍有高浓度 PM2:5 涌现的风险, 甚至出现更为严重的污染。本研究结果对于区域 PM2:5 多时间 尺度演化动力特征的研究以及大气污染预测预警机制的建立具有重要意义。
中图分类号:
杜 娟, 刘春琼, 吴 波, 张 娇, 黄 毅, 史 凯∗. 长株潭城市群PM2.5 多尺度演化的EEMD 和多重分形分析[J]. 大气与环境光学学报, 2022, 17(3): 304-316.
DU Juan, LIU Chunqiong, WU Bo, ZHANG Jiao, HUANG Yi, SHI Kai∗. Multiscale ensemble empirical mode decomposition and multifractal approach of PM2.5 evolution in Changsha-Zhuzhou-Xiangtan Urban Agglomeration[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 304-316.
[1] | Zhang L K, Lu S F, Jiao K L, et al. Pollution characteristics of particulate matter in urban districts of Baotou and their |
relationships with meteorological conditions [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(6): 401-410. | |
张连科, 鲁尚发, 焦坤灵, 等. 包头城区冬春大气颗粒物污染特征及其与气象条件关系 [J]. 大气与环境光学学报, 2017, | |
12 | (6): 401-410. |
[2] | Yang Y Y, Zhou H, Wang X L, et al. Comparison and analysis of a heavy pollution weather process in the south ChangshaZhuzhou-Xiangtan and north Beijing-Tianjin-Hebei urban agglomeration [J]. Journal of Catastrophology, 2017, 32(2): 141- |
145. | |
杨云芸, 周 慧, 王晓雷, 等. 南方长株潭与北方京津冀城市群一次重污染天气过程对比分析 [J]. 灾害学, 2017, 32(2): | |
14 | 1-145. |
[3] | Xie Z H, Liu C Q, Shi K. Impacts of PM10 on the radiation environments of the atmosphere in Chengdu City [J]. Research of |
Environmental Sciences, 2016, 29(7): 972-977. | |
谢志辉, 刘春琼, 史 凯. 成都市 PM10 对大气辐射环境的影响 [J]. 环境科学研究, 2016, 29(7): 972-977. | |
[4] | Shi K. Self-organized criticality of PM2:5 during a typical haze period in Chengdu, China [J]. Acta Scientiae Circumstantiae, |
20 | 14, 34(10): 2645-2653. |
史 凯. 成都市一次重度灰霾期间大气 PM2:5 的自组织临界特性 [J]. 环境科学学报, 2014, 34(10): 2645-2653. | |
[5] | Parrish D D, Zhu T. Clean air for megacities [J]. Science, 2009, 326(5953): 674-675. |
[6] | Liu H L, Wu Y, Chen M D, et al. Characteristics of atmospheric PM2:5 in Nanjing City and its cytotoxicity in human lung |
epithelial cells A549 [J]. Research of Environmental Sciences, 2018, 31(10): 1736-1742. | |
刘慧灵, 毋 赟, 陈敏东, 等. 南京市大气 PM2:5 无机组分及对 A549 细胞的毒性效应 [J]. 环境科学研究, 2018, 31(10): | |
17 | 36-1742. |
[7] | Xie Z X, Qin Y C, Zheng Z C, et al. Assessing the death effect of PM2:5 pollution in cities of atmospheric pollution transmission |
channel in the Beijing-Tianjin-Hebei district [J]. Acta Scientiae Circumstantiae, 2019, 39(3): 843-852. | |
谢志祥, 秦耀辰, 郑智成, 等. 京津冀大气污染传输通道城市 PM2:5 污染的死亡效应评估 [J]. 环境科学学报, 2019, 39(3): | |
84 | 3-852. |
[8] | Wang Z, Han B, Ni T R, et al. Health risk assessment of trace elements of PM2:5 exposure for the elderly subpopulation in |
Tianjin, China [J]. Research of Environmental Sciences, 2013, 26(8): 913-918. | |
王 钊, 韩 斌, 倪天茹, 等. 天津市某社区老年人 PM2:5 暴露痕量元素健康风险评估 [J]. 环境科学研究, 2013, 26(8): | |
91 | 3-918. |
[9] | Weng Y C, Chang N, Lee T. Nonlinear time series analysis of ground-level ozone dynamics in Southern Taiwan [J]. Journal of |
Environmental Management, 2008, 87(3): 405-414. | |
[10] | Lu W Z, Wang X K. Evolving trend and self-similarity of ozone pollution in central Hong Kong ambient during 1984–2002 |
[J] | Science of the Total Environment, 2006, 357(1/2/3): 160-168. |
[11] | Zhu J L, Liu Z G. Long-range persistence of acid deposition [J]. Atmospheric Environment, 2003, 37(19): 2605-2613. |
[12] | Shi K, Liu C Q, Ai N S. Air quality analysis for Shanghai using multi-fractal approach [J]. Environmental Pollution & Control, |
20 | 08, 30(9): 60-64. |
史 凯, 刘春琼, 艾南山. 上海市空气质量变化的多重分形分析 [J]. 环境污染与防治, 2008, 30(9): 60-64. | |
[13] | Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time |
series [J]. Physica A: Statistical Mechanics and Its Applications, 2002, 316(1/2/3/4): 87-114. | |
[14] | Schumann A Y, Kantelhardt J W. Multifractal moving average analysis and test of multifractal model with tuned correlations |
[J] | Physica A: Statistical Mechanics and Its Applications, 2011, 390(14): 2637-2654. |
[15] | Paladin G, Vulpiani A. Anomalous scaling laws in multifractal objects [J]. Physics Reports, 1987, 156(4): 147-225. |
[16] | Shen C H, Huang Y, Yan Y N. An analysis of multifractal characteristics of API time series in Nanjing, China [J]. Physica A: |
Statistical Mechanics and Its Applications, 2016, 451: 171-179. | |
[17] | Huang Y, Liu C Q, Zheng K L, et al. Multifractal analysis of PM2:5 evolution during a typical haze [J]. Environmental Science |
& Technology, 2019, 42(2): 67-73. | |
黄 毅, 刘春琼, 郑凯莉, 等. 典型灰霾期间 PM2:5 演化的多重分形特征分析 [J]. 环境科学与技术, 2019, 42(2): 67-73. | |
[18] | Munoz D A, Galvez C G, Balderas L J A, et al. Multifractal analysis of air pollutants time series [J]. Revista Mexicana De |
Fisica, 2013, 59(1): 7-13. | |
[19] | Du J, Liu C Q, Huang H L, et al. Multiscale EEMD decomposition of PM2:5 in Chengdu during winter and self-organized |
criticality of air pollution [J]. Environmental Science & Technology, 2019, 42(8): 133-141. | |
杜 娟, 刘春琼, 黄红良, 等. 成都冬季 PM2:5 演化的 EEMD 分解及自组织临界态 [J]. 环境科学与技术, 2019, 42(8): | |
13 | 3-141. |
[20] | Wu Z H, Huang N. Ensemble empirical mode decomposition: a noise assisted data analysis method [J]. Advances in Adaptive |
Data Analysis, 2009, 1(1): 1-41. | |
[21] | Kim T, Shin J Y, Kim S, et al. Identification of relationships between climate indices and long-term precipitation in South |
Korea using ensemble empirical mode decomposition [J]. Journal of Hydrology, 2018, 557: 726-739. | |
[22] | Wang J, Wang X, Lei X H, et al. Teleconnection analysis of monthly streamflow using ensemble empirical mode decomposition |
[J] | Journal of Hydrology, 2020, 582: 124411. |
[23] | Xu M J, Shang P J, Lin A J. Cross-correlation analysis of stock markets using EMD and EEMD [J]. Physica A: Statistical |
Mechanics and Its Applications, 2016, 442: 82-90. | |
[24] | Zhang N N, Lin A J, Shang P J. Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting [J]. Physica A: Statistical Mechanics and Its Applications, 2017, 477: 161-173. |
[25] | Gong X, Lin B Q. Modeling stock market volatility using new HAR-type models [J]. Physica A: Statistical Mechanics and Its |
Applications, 2019, 516: 194-211. | |
[26] | He T. Study on the Pollution Space Update of Changsha-Zhuzhou-Xiangtan Urban Agglomeration [D]. Changsha: Hunan |
Normal University, 2016. | |
何 甜. 长株潭城市群污染空间更新利用研究 [D]. 长沙: 湖南师范大学, 2016. | |
[27] | He T, Shuai H, Zhu X. Pollution space recognition and pollution distribution of Changsha-Zhuzhou-Xiangtan urban agglomeration [J]. Scientia Geographica Sinica, 2016, 36(7): 1081-1090. |
何 甜, 帅 红, 朱 翔. 长株潭城市群污染空间识别与污染分布研究 [J]. 地理科学, 2016, 36(7): 1081-1090. | |
[28] | Liao Z H, Fan S J, Huang J, et al. Characteristic analysis of a multi-day pollution event in Chang-Zhu-tan metropolitan area |
during October 2013 [J]. Environmental Science, 2014, 35(11): 4061-4069. | |
廖志恒, 范绍佳, 黄 娟, 等. 2013 年 10 月长株潭城市群一次持续性空气污染过程特征分析 [J]. 环境科学, 2014, 35(11): | |
40 | 61-4069. |
[29] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
[30] | Qi O Y, Lu W X, Xin X, et al. Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction [J]. Water |
Resources Management, 2016, 30(7): 2311-2325. | |
[31] | Smitha B, Paul Joseph K. Fractal and multifractal analysis of atherosclerotic plaque in ultrasound images of the carotid artery |
[J] | Chaos, Solitons & Fractals, 2019, 123: 91-100. |
[32] | Lahmiri S, Bekiros S. Chaos, randomness and multi-fractality in bitcoin market [J]. Chaos Solitons & Fractals, 2018, 106: |
28 | -34. |
[33] | Menceur M, Mabrouk A B. A joint multifractal analysis of vector valued non Gibbs measures [J]. Chaos, Solitons & Fractals, |
20 | 19, 126: 203-217. |
[34] | Lahmiri S, Bekiros S, Salvi A. Long-range memory, distributional variation and randomness of bitcoin volatility [J]. Chaos, |
Solitons & Fractals, 2018, 107: 43-48. | |
[35] | Kantelhardt J W, Rybski D, Zschiegner S A, et al. Multifractality of river runoff and precipitation: Comparison of fluctuation |
analysis and wavelet methods [J]. Physica A: Statistical Mechanics and Its Applications, 2003, 330(1/2): 240-245. | |
[36] | Shi K, Li W Y, Liu C Q, et al. Multifractal fluctuations of Jiuzhaigou tourists before and after Wenchuan earthquake [J]. |
Fractals, 2013, 21(1): 1350001. | |
[37] | He J J, Gong S L, Yu Y, et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in |
major Chinese cities [J]. Environmental Pollution, 2017, 223: 484-496. | |
[38] | Liu T, Gong S L, Yu M, et al. Contributions of meteorology and emission to the 2015 winter severe haze pollution episodes in |
Northern China [J]. Atmospheric Chemistry and Physics, 2016: 1-17. | |
[39] | Lana I, del Ser J, Padr ˜ o A, ´ et al. The role of local urban traffic and meteorological conditions in air pollution: A data-based |
case study in Madrid, Spain [J]. Atmospheric Environment, 2016, 145: 424-438. | |
[40] | Wang Y Q, Zhang X Y, Sun J Y, et al. Spatial and temporal variations of the concentrations of PM10, PM2:5 and PM1 in China |
[J] | Atmospheric Chemistry and Physics, 2015, 15: 13585-13598. |
[41] | Liu C Q, Geng H, Shen P, et al. Coupling detrended fluctuation analysis of the relationship between O3 and its precursors-a |
case study in Taiwan [J]. Atmospheric Environment, 2018, 188: 18-24. |
[1] | 杜娟, 欧阳文言, 刘春琼, 吴波, 张娇, 史凯 . 短周期高强度旅游活动对城市空气质量的影响[J]. 大气与环境光学学报, 2023, 18(1): 36-46. |
[2] | 戴刘新, 张莹∗, 李正强, 漏嗣佳. 中国近地面PM2.5 质量浓度卫星遥感数据集比较及历史趋势分析[J]. 大气与环境光学学报, 2022, 17(6): 613-629. |
[3] | 张乐乐, 孙慧兰∗, 杨余辉, 卢宝宝, 刘天弋, 兰小丽, 曹丽君. 伊宁市冬季PM2.5 输送特征及污染源地分析[J]. 大气与环境光学学报, 2022, 17(3): 294-303. |
[4] | 罗 琼, 冯 淼, 宋丹林, 周 力∗, 陆成伟, 杨复沫, . 成都春季复合污染下PM2:5 的化学消光贡献[J]. 大气与环境光学学报, 2022, 17(1): 148-159. |
[5] | 彭立平, 黄 毅∗, 郑凯莉. 旅游活动强度变化下旅游地大气PM2.5浓度响应研究[J]. 大气与环境光学学报, 2021, 16(6): 471-482. |
[6] | 张怡文, 袁宏武∗, 孙 鑫, 吴海龙, 董云春. 基于Adam 注意力机制的PM2:5浓度预测方法[J]. 大气与环境光学学报, 2021, 16(2): 117-126. |
[7] | 黄 毅, 郑凯莉, 彭立平, 刘春琼, 杨艺池. 基于MF-DCCA 的呼吸道疾病与大气污染物相关性分析[J]. 大气与环境光学学报, 2021, 16(1): 35-43. |
[8] | 郑凯莉, 黄 毅∗, 姚小云, 胡晓琰. 张家界市PM2.5、NO2 与旅游活动及天气因素的相关性分析[J]. 大气与环境光学学报, 2020, 15(5): 347-356. |
[9] | 谢焕丽,何红弟. 香港港口PM2.5和PM10的多重分形特征[J]. 大气与环境光学学报, 2019, 14(3): 179-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||