大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (6): 613-629.
• “新型卫星载荷大气遥感及应用” 专辑 • 上一篇 下一篇
戴刘新1;2, 张莹1∗, 李正强1, 漏嗣佳3
收稿日期:
2021-12-31
修回日期:
2022-02-18
出版日期:
2022-11-28
发布日期:
2022-12-14
通讯作者:
E-mail: zhang ying@aircas.ac.cn
E-mail:zhangying02@radi.ac.cn
作者简介:
戴刘新(1998 - ), 女, 河北石家庄人, 硕士研究生, 主要从事大气颗粒物遥感研究。E-mail: dailx142@qq.com
基金资助:
DAI Liuxin1;2, ZHANG Ying1∗, LI Zhengqiang1, LOU Sijia3
Received:
2021-12-31
Revised:
2022-02-18
Published:
2022-11-28
Online:
2022-12-14
摘要: 随着对大气污染问题的日益重视, 监测大气颗粒物质量浓度也成为了热门研究领域。针对现行两种流行算法 (基于模式模拟和基于机器学习) 产生的近地面PM2:5 质量浓度科学数据集进行了比较分析, 利用城市年均PM2:5 监测 数据定量评估两数据集的不确定性, 并通过空间自相关分析对两数据集的空间合理性进行了评价。同时, 还利用标准 差椭圆分析研究了2000–2018 年间主要污染区域(北京、天津、河北、河南、山西、山东等地) PM2:5 的时空演变趋 势。结果表明, 基于机器学习算法产生的数据集(CHAP) 具有较高的精度, 适用于区域性空气质量研究; 而基于模式模 拟算法产生的数据集(vanDonkelaarA) 具有合理的空间分布, 更适合于大尺度、长时间的污染趋势分析。由标准差椭 圆分析发现, 2000–2018 年研究区域标准差椭圆中心的位置整体向东北方向移动; 2013 年前PM2:5 分布范围及年均值 在波动中呈现整体上升的趋势, 随后显著下降, 造成PM2:5 浓度下降的主要因素是有效管控措施的实施。研究结果为 中国区域的细颗粒物污染研究的数据集选取提供了参考依据, 为大气细颗粒物污染的防控提供科学支撑。
中图分类号:
戴刘新, 张莹∗, 李正强, 漏嗣佳. 中国近地面PM2.5 质量浓度卫星遥感数据集比较及历史趋势分析[J]. 大气与环境光学学报, 2022, 17(6): 613-629.
DAI Liuxin, ZHANG Ying∗, LI Zhengqiang, LOU Sijia. Comparison and historical trend analysis of satellite remote sensing datasets of near-surface PM2.5 mass concentration in China[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 613-629.
[1] | Han J, Li Y Z, Li F. Spatio-temporal distribution characteristic of PM2:5 concentration and the difference of PM2:5 concentration |
between urban areas and rural areas in China from 2000 to 2015 [J]. Acta Ecologica Sinica, 2019, 39(8): 2954-2962. | |
韩婧, 李元征, 李锋. 2000–2015 年中国PM2:5 浓度时空分布特征及其城乡差异[J]. 生态学报, 2019, 39(8): 2954-2962. | |
[2] | Mori T, Goto-Azuma K, Kondo Y, et al. Black carbon and inorganic aerosols in Arctic snowpack [J]. Journal of Geophysical |
Research: Atmospheres, 2019, 124(23): 13325-13356. | |
[3] | Xie Y B, Chen J, Li W. An assessment of PM2:5 related health risks and impaired values of Beijing residents in a consecutive |
high-level exposure during heavy haze days [J]. Environmental Science, 2014, 35(1): 1-8. | |
谢元博, 陈娟, 李巍. 雾霾重污染期间北京居民对高浓度PM2:5 持续暴露的健康风险及其损害价值评估[J]. 环境科学, | |
20 | 14, 35(1): 1-8. |
[4] | Wan Y, Li Y H, Liu C H, et al. Is traffic accident related to air pollution? A case report from an island of Taihu Lake, China |
[J] | Atmospheric Pollution Research, 2020, 11(5): 1028-1033. |
[5] | Su W, Zhang S J, Lai X Y, et al. Spatiotemporal dynamics of atmospheric PM2:5 and PM10 and its influencing factors in |
Nanchang, China [J]. Chinese Journal of Applied Ecology, 2017, 28(1): 257-265. | |
苏维, 张帅珺, 赖新云, 等. 南昌市空气PM2:5 和PM10 的时空动态及其影响因素[J]. 应用生态学报, 2017, 28(1): 257-265. | |
[6] | Hu J L, Wang Y G, Ying Q, et al. Spatial and temporal variability of PM2:5 and PM10 over the North China Plain and the |
Yangtze River Delta, China [J]. Atmospheric Environment, 2014, 95: 598-609. | |
[7] | Zhang Y Y. Characteristic of Water-Soluble Ions in PM2:5 in the Northern Suburb of Nanjing Based on On-Line Monitoring |
[D] | Nanjing: Nanjing University of Information Science & Technology, 2017. |
张园园. 南京北郊PM2:5 中水溶性离子特征在线监测研究[D]. 南京: 南京信息工程大学, 2017. | |
[8] | Wang K. Study on the Monitoring Method of Night Haze in Beijing Area Based on Radiative Transfer Model [D]. Chongqing: |
Chongqing Jiaotong University, 2017. | |
王奎. 基于辐射传输模型的北京地区夜间霾监测方法研究[D]. 重庆: 重庆交通大学, 2017. | |
[9] | Guo J P, Zhang X Y, Wu Y R, et al. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during |
19 | 80–2008 [J]. Atmospheric Environment, 2011, 45(37): 6802-6811. |
[10] | Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM2:5 mass: implications for |
air quality studies [J]. Geophysical Research Letters, 2003, 30(21): 2095. | |
[11] | Hammer M S, van Donkelaar A, Li C, et al. Global estimates and long-term trends of fine particulate matter concentrations |
(1998–2018) [J]. Environmental Science & Technology, 2020, 54(13): 7879-7890. | |
[12] | van Donkelaar A, Martin R V, Brauer M, et al. Use of satellite observations for long-term exposure assessment of global |
concentrations of fine particulate matter [J]. Environmental Health Perspectives, 2015, 123(2): 135-143. | |
[13] | van Donkelaar A, Martin R V, Li C, et al. Regional estimates of chemical composition of fine particulate matter using a |
combined geoscience-statistical method with information from satellites, models, and monitors [J]. Environmental Science & | |
Technology, 2019, 53(5): 2595-2611. | |
[14] | Chu D A, Tsai T C, Chen J P, et al. Interpreting aerosol lidar profiles to better estimate surface PM2:5 for columnar AOD |
measurements [J]. Atmospheric Environment, 2013, 79: 172-187. | |
[15] | Zhang Y, Li Z Q, Chang W Y, et al. Satellite observations of PM2:5 changes and driving factors based forecasting over China |
20 | 00–2025 [J]. Remote Sensing, 2020, 12(16): 2518. |
[16] | Zhang Y, Li Z Q. Remote sensing of atmospheric fine particulate matter (PM2:5) mass concentration near the ground from |
satellite observation [J]. Remote Sensing of Environment, 2015, 160: 252-262. | |
[17] | Zhang H, Wang S G, Xin J Y, et al. The temporal and spatial distribution characteristics of PM2:5 in the Sichuan Basin based |
on MODIS AOD revised by ground-based observations [J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(5): | |
61 | 0-615. |
张晗, 王式功, 辛金元, 等. 基于地基观测订正的MODIS AOD 反演四川盆地PM2:5 时空分布特征[J]. 兰州大学学报(自 | |
然科学版) | , 2019, 55(5): 610-615. |
[18] | Xia Z Y, Liu Z H, Wang Y Q, et al. Research on ground-level PM2:5 mass concentration retrieval based on MODIS aerosol |
optical thickness [J]. Plateau Meteorology, 2015, 34(6): 1765-1771. | |
夏志业, 刘志红, 王永前, 等. MODIS 气溶胶光学厚度的PM2:5 质量浓度遥感反演研究[J]. 高原气象, 2015, 34(6): | |
17 | 65-1771. |
[19] | Xia J H. Spatio-Temporal Pattern Analysis of Meteorological-data-Based PM2:5 Concentration in China: 1980–2016 [D]. |
Wuhan: Wuhan University, 2019. | |
夏加豪. 基于气象数据的1980–2016 年中国PM2:5 时空模式分析[D]. 武汉: 武汉大学, 2019. | |
[20] | Cui X H, Xie J F, Zhang F, et al. Establishment of PM2:5 forecasting model based on deep learning [J]. Beijing Surveying and |
Mapping, 2017, (6): 22-27. | |
崔相辉, 谢剑锋, 张丰, 等. 基于深度学习的PM2:5 预测模型建立[J]. 北京测绘, 2017, (6): 22-27. | |
[21] | Chen N, Mao S J, Li D L, et al. PM2:5 prediction model based on multi-station co-training neural network [J]. Science of |
Surveying and Mapping, 2018, 43(7): 87-93. | |
陈宁, 毛善君, 李德龙, 等. 多基站协同训练神经网络的PM2:5 预测模型[J]. 测绘科学, 2018, 43(7): 87-93. | |
[22] | Wei J, Li Z Q, Cribb M, et al. Improved 1-km-resolution PM2:5 estimates across China using enhanced space-time extremely |
randomized trees [J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3273-89. | |
[23] | Wei J, Li Z Q, Lyapustin A, et al. Reconstructing 1-km-resolution high-quality PM2:5 data records from 2000 to 2018 in China: |
Spatiotemporal variations and policy implications [J]. Remote Sensing of Environment, 2021, 252: 112136. | |
[24] | Jin X, Fiore A M, Curci G, et al. Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter |
distributions from satellite-observed aerosol optical depth [J]. Atmospheric Chemistry and Physics, 2019, 19(1): 295-313. | |
[25] | van Donkelaar A, Martin R V, Park R J. Estimating ground-level PM2:5 using aerosol optical depth determined from satellite |
remote sensing [J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D21201. | |
[26] | Liu Y, Park R J, Jacob D J, et al. Mapping annual mean ground-level PM2:5 concentrations using Multiangle Imaging Spectroradiometer |
aerosol optical thickness over the contiguous United States [J]. Journal of Geophysical Research: Atmospheres, | |
20 | 04, 109: D22206. |
[27] | van Donkelaar A, Martin R V, Brauer M, et al. Global estimates of ambient fine particulate matter concentrations from satellitebased |
aerosol optical depth: development and application [J]. Environmental Health Perspectives, 2010, 118(6): 847-855. | |
[28] | van Donkelaar A, Martin R V, Spurr R J D, et al. Optimal estimation for global ground-level fine particulate matter concentrations |
[J] | Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5621-5636. |
[29] | Wei J, Li Z Q, Sun L, et al. Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol |
products [J]. Atmospheric Environment, 2019, 202: 315-327. | |
[30] | Wei J, Li Z Q, Peng Y R, et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and |
comparison [J]. Atmospheric Environment, 2019, 201: 428-440. | |
[31] | Lefever D W. Measuring geographic concentration by means of the standard deviational ellipse [J]. American Journal of |
Sociology, 1926, 32(1): 88-94. | |
[32] | Li D R, Yu H R, Li X. The spatial-temporal pattern analysis of city development in countries along the Belt and Road initiative |
based on nighttime light data [J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 711-720. | |
李德仁, 余涵若, 李熙. 基于夜光遥感影像的“一带一路” 沿线国家城市发展时空格局分析[J]. 武汉大学学报·信息科学 | |
版, 2017, 42(6): 711-720. | |
[33] | Zhao L, Zhao Z Q. Projecting the spatial variation of economic based on the specific ellipses in China [J]. Scientia Geographica |
Sinica, 2014, 34(8): 979-986. | |
赵璐, 赵作权. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学, 2014, 34(8): 979-986. | |
[34] | Gao C C, Zhu H F, Xiao H L, et al. Dynamic evolution of spatial difference of regional economy in Hunan Province based on |
spatial statistical analysis [J]. Geomatics & Spatial Information Technology, 2019, 42(8): 46-51. | |
高长春, 朱慧方, 校韩立, 等. 基于空间统计分析的湖南省区域经济空间差异动态演化[J]. 测绘与空间地理信息, 2019, | |
42 | (8): 46-51. |
[35] | Guo S F, Guo J H, Zhao G H. The analysis of spatial and temporal transition paths and convergence evolution of county |
innovation level evidence-based on the patent data of county scale in Shanxi Province [J]. Science & Technology Progress and | |
Policy, 2019, 36(4): 50-57. | |
郭淑芬, 郭金花, 赵国浩. 县域创新水平时空跃迁路径与趋同演化规律分析: 基于山西省县级尺度专利数据的证据[J]. | |
科技进步与对策, 2019, 36(4): 50-57. | |
[36] | Lin M, Duan Z R, Cai D. Analysis and countermeasure of hot spot of battery car theft crime [J]. Legal System and Society, |
20 | 17, (13): 25-26. |
林曼, 段泽任, 蔡栋. 电瓶车盗窃犯罪热点时空转移分析及对策[J]. 法制与社会, 2017, (13): 25-26. | |
[37] | Tobler W R. A computer movie simulating urban growth in the Detroit region [J]. Economic Geography, 1970, 46(sup1): |
23 | 4-240. |
[38] | de Jong P, Sprenger C, van Veen F. On extreme values of Moran′s I and Geary′s c [J]. Geographical Analysis, 1984, 16(1): |
17 | -24. |
[39] | Liu H, He K B, Ma Y L, et al. Variations of PM2:5 and its water-soluble ions in urban and suburban Beijing before, during, and |
after the 2008 Olympiad [J]. Acta Scientiae Circumstantiae, 2011, 31(1): 177-185. | |
刘辉, 贺克斌, 马永亮, 等. 2008 年奥运前后北京城、郊PM2:5 及其水溶性离子变化特征[J]. 环境科学学报, 2011, 31(1): | |
17 | 7-185. |
[40] | Wu Y H, He X, Li C C, et al. Application of remote sensing atmospheric aerosol optical depth on monitoring the surface air |
quality in 2008 of Beijing [J]. Journal of Atmospheric and Environmental Optics, 2009, 4(4): 266-273. | |
吴永红, 何秀, 李成才, 等. 卫星遥感气溶胶光学厚度在北京2008 年地面空气质量监测上的应用[J]. 大气与环境光学 | |
学报, 2009, 4(4): 266-273. | |
[41] | Wang Z J, Han L H, Chen X F, et al. Characteristics and sources of PM2:5 in typical atmospheric pollution episodes in Beijing |
[J] | Journal of Safety and Environment, 2012, 12(5): 122-126. |
王志娟, 韩力慧, 陈旭锋, 等. 北京典型污染过程PM2:5 的特性和来源[J]. 安全与环境学报, 2012, 12(5): 122-126. | |
[42] | 重点区域大气污染防治“十二五” 规划[J]. 中国环保产业, 2013, (1): 4-18. |
[43] | Chen H, Li Q, Li Y, et al. Monitoring and analysis of the spatio-temporal change characteristics of the PM2:5 concentration over |
Beijing-Tianjin-Hebei and its surrounding regions based on remote sensing [J]. Environmental Science, 2019, 40(1): 33-43. | |
陈辉, 厉青, 李营, 等. 京津冀及周边地区PM2:5 时空变化特征遥感监测分析[J]. 环境科学, 2019, 40(1): 33-43. | |
[44] | Shan W. Climate change and evolution of extreme weather events in Nanyang city in the past 50 years[C]. the Annual Meeting |
of the Chinese Meteorological Society, October 1, 2006, Chengdu, Sichuan, China. 2006: 871-875. | |
单伟. 南阳市50 年气候变化及极端天气事件的演变[C]. 中国气象学会年会, 2006 年10 月1 日, 中国四川成都. 2006: | |
87 | 1-875. |
[45] | Yin Y Z,Wang M,Wang J Y, et al. The relationships of pollution characteristics of PM10, PM2:5 and meteorological parameters |
in Nanyang City [J]. Arid Environmental Monitoring, 2018, 32(1): 12-18. | |
尹延震, 王苗, 王静远, 等. 南阳市PM10、PM2:5 污染特征及其与气象因子的关系[J]. 干旱环境监测, 2018, 32(1): 12-18. |
[1] | 加亦瑱, 陶明辉∗, 丁思佳, 刘航语, 曾铭裕, 陈良富. 基于卫星遥感的中国地区XCO2 和XCH4 时空分布研究[J]. 大气与环境光学学报, 2022, 17(6): 679-692. |
[2] | 樊欣怡, 廉丽姝∗, 王 猛. 环渤海城市群空气污染特征及其与气象要素的关系[J]. 大气与环境光学学报, 2022, 17(5): 506-520. |
[3] | 张乐乐, 孙慧兰∗, 杨余辉, 卢宝宝, 刘天弋, 兰小丽, 曹丽君. 伊宁市冬季PM2.5 输送特征及污染源地分析[J]. 大气与环境光学学报, 2022, 17(3): 294-303. |
[4] | 杜 娟, 刘春琼, 吴 波, 张 娇, 黄 毅, 史 凯∗. 长株潭城市群PM2.5 多尺度演化的EEMD 和多重分形分析[J]. 大气与环境光学学报, 2022, 17(3): 304-316. |
[5] | 罗 琼, 冯 淼, 宋丹林, 周 力∗, 陆成伟, 杨复沫, . 成都春季复合污染下PM2:5 的化学消光贡献[J]. 大气与环境光学学报, 2022, 17(1): 148-159. |
[6] | 张怡文, 袁宏武∗, 孙 鑫, 吴海龙, 董云春. 基于Adam 注意力机制的PM2:5浓度预测方法[J]. 大气与环境光学学报, 2021, 16(2): 117-126. |
[7] | 黄 毅, 郑凯莉, 彭立平, 刘春琼, 杨艺池. 基于MF-DCCA 的呼吸道疾病与大气污染物相关性分析[J]. 大气与环境光学学报, 2021, 16(1): 35-43. |
[8] | 毛慧琴 张玉环 厉青 张丽娟. 基于卫星遥感的生物质燃烧排放估算研究进展[J]. 大气与环境光学学报, 2016, 11(6): 402-411. |
[9] | 秦玮 范广强 张天舒 吕立慧 项衍 盛世杰. 基于激光雷达和地面监测数据对南京一次沙尘和细粒子污染时空演变特征的分析[J]. 大气与环境光学学报, 2016, 11(4): 270-280. |
[10] | 吴永红 何秀 李成才 刘晓阳 王美华 刘启汉 毛节泰. 卫星遥感气溶胶光学厚度在北京2008年地面空气质量监测上的应用[J]. 大气与环境光学学报, 2009, 4(4): 266-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||