大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (6): 640-654.
• “新型卫星载荷大气遥感及应用” 专辑 • 上一篇 下一篇
汪可1;2, 李正强2∗, 李凯涛2∗, 许华2, 侯梦雨1;2, 王博林2;3
收稿日期:
2021-12-13
修回日期:
2022-02-24
出版日期:
2022-11-28
发布日期:
2022-12-14
通讯作者:
E-mail: lizq@radi.ac.cn; likt@radi.ac.cn
E-mail:lizq@aircas.ac.cn
作者简介:
汪可(1998 - ), 安徽安庆人, 硕士研究生, 主要从事地基观测方面的研究。E-mail: kewang@ahnu.edu.cn
基金资助:
WANG Ke1;2, LI Zhengqiang2∗, LI Kaitao2∗, XU Hua2, HOU Mengyu1;2, WANG Bolin2;3
Received:
2021-12-13
Revised:
2022-02-24
Published:
2022-11-28
Online:
2022-12-14
Contact:
Zheng-Qiang Li
E-mail:lizq@aircas.ac.cn
摘要: 臭氧是大气中一种重要的微量气体, 是影响对流层与平流层大气运动的重要成分之一, 臭氧的高精度探测 对于环境和气候具有重要的意义。OMI 传感器是目前具备探测全球臭氧含量的主要遥感传感器之一。利用地基 Pandora 观测网全球范围内44 个臭氧观测站点数据对OMI 卫星数据产品进行了精度验证。结果表明: OMI 臭氧产品 与Pandora 地基测量结果之间具有很好的线性相关性, 相关系数达到0.948, 但精度结果存在区域差异。在南半球地区, 相关系数为0.915; 在北半球低纬度地区, 其相关系数为0.932, 中纬度地区相关系数为0.948, 而在高纬度地区, 相关系 数达到了0.957。此外, 验证精度还与臭氧柱总量存在相关性, 在臭氧柱总量低于220 Du (对应臭氧空洞条件) 时, OMI 卫星产品存在高估现象, 高估约13%; 而在臭氧柱总量高于400 Du 时, OMI 的臭氧产品低于Pandora 地基测量结果, 且 随着臭氧柱总量增加, 低估情况也越严重, 在臭氧柱总量达到500 Du 时, OMI 臭氧产品低估约4%。
中图分类号:
汪可, 李正强∗, 李凯涛∗, 许华, 侯梦雨, 王博林, . 基于Pandora 观测的OMI 全球臭氧产品精度验证[J]. 大气与环境光学学报, 2022, 17(6): 640-654.
WANG Ke, LI Zhengqiang∗, LI Kaitao∗, XU Hua, HOU Mengyu, WANG Bolin, . Accuracy verification of OMI global ozone products based on Pandora observations[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 640-654.
[1] | Harries J E. Atmospheric radiation and atmospheric humidity [J]. Quarterly Journal of the Royal Meteorological Society, 1997, |
12 | 3(544): 2173-2186. |
[2] | Marceau D J, Hay G J. Remote sensing contributions to the scale issue [J]. Canadian journal of remote sensing, 1999, 25(4): |
35 | 7-366. |
[3] | Cho H K, Kim J, Oh S N, et al. A climatology of stratospheric ozone over Korea [J]. Korean Journal of the Atmospheric |
Sciences, 2003, 6: 97-112. | |
[4] | Martens W J. Health impacts of climate change and ozone depletion: An ecoepidemiologic modeling approach [J]. Environmental |
Health Perspectives, 1998, 106 (suppl 1): 241-251. | |
[5] | Solomon S. Stratospheric ozone depletion: A review of concepts and history [J]. Reviews of Geophysics, 1999, 37(3): 275-316. |
[6] | Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction [J]. |
Nature, 1985, 315(6016): 207-210. | |
[7] | Chubachi S. A special ozone observation at syowa station, Antarctica from February 1982 to January 1983 [C]. Atmospheric |
Ozone. Springer, Dordrecht, 1985: 285-289. | |
[8] | Dou X, Zhang J Q, Zhu B, et al. Analysis of total ozone column from ground-based observation and its trend at Xianghe |
Station [J]. Climatic and Environmental Research, 2019, 24(2): 143-151. | |
窦鑫, 张金强, 朱彬, 等. 香河地基观测臭氧柱总量数据分析及臭氧变化趋势研究[J]. 气候与环境研究, 2019, 24(2): | |
14 | 3-151. |
[9] | Josefsson W A P. Focused sun observations using a Brewer ozone spectrophotometer [J]. Journal of Geophysical Research: |
Atmospheres, 1992, 97(D14): 15813-15817. | |
[10] | Paul G¨otz F W, Meetham A R, Dobson G M B. The vertical distribution of ozone in the atmosphere [J]. Proceedings of the |
Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1934, 145(855): 416-446. | |
[11] | Dütsch H U. Vertical ozone distribution from Umkehr observations [J]. Archiv Für Meteorologie, Geophysik Und Bioklimatologie, |
Serie A, 1959, 11(2): 240-251. | |
[12] | Petropavlovskikh I, Bhartia P K, DeLuisi J. New Umkehr ozone profile retrieval algorithm optimized for climatological studies |
[J] | Geophysical Research Letters, 2005, 32(16): L16808. |
[13] | Zhang Y. Variation of Total Ozone over China for 30 Years and Meteorological Factors on Ozone Concentrations near the |
Ground [D]. Nanjing: Nanjing University of Information Science & Technology, 2014. | |
张莹. 中国臭氧总量30a 时空变化以及近地面臭氧浓度气象要素影响研究[D]. 南京: 南京信息工程大学, 2014. | |
[14] | Dou X. Analysis of Total Ozone Column from Ground-based Observation and Satellite Observation at Xianghe [D]. Nanjing: |
Nanjing University of Information Science & Technology, 2018. | |
窦鑫. 香河地基、卫星臭氧柱总量观测分析[D]. 南京: 南京信息工程大学, 2018. | |
[15] | Han S S. Research of Satellite Remote Sensing Monitoring of Atmospheric Ozone Distribution in Arctic [D]. Beijing: China |
University of Geosciences, 2017. | |
韩爽爽. 北极地区大气臭氧分布变化的卫星遥感监测研究[D]. 北京: 中国地质大学(北京), 2017. | |
[16] | Balis D, Kroon M, Koukouli M E, et al. Validation of ozone monitoring instrument total ozone column measurements using |
Brewer and Dobson spectrophotometer ground-based observations [J]. Journal of Geophysical Research: Atmospheres, 2007, | |
11 | 2: D24S46. |
[17] | Antón M, L´opez M, Vilaplana J M, et al. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer |
spectroradiometers at the Iberian peninsula [J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D14307. | |
[18] | Damiani A, de Simone S, Rafanelli C, et al. Three years of ground-based total ozone measurements in the Arctic: Comparison |
with OMI, GOME and SCIAMACHY satellite data [J]. Remote Sensing of Environment, 2012, 127: 162-180. | |
[19] | Virolainen Y A, Timofeyev Y M, Poberovsky A V. Intercomparison of satellite and ground-based ozone total column measurements |
[J] | Izvestiya, Atmospheric and Oceanic Physics, 2013, 49(9): 993-1001. |
[20] | Baek K, Kim J H, Herman J R, et al. Validation of Brewer and Pandora measurements using OMI total ozone [J]. Atmospheric |
Environment, 2017, 160: 165-175. | |
[21] | Kim J, Kim J, Cho H K, et al. Intercomparison of total column ozone data from the Pandora spectrophotometer with Dobson, |
Brewer, and OMI measurements over Seoul, Korea [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3661-3676. | |
[22] | Herman J, Cede A, Spinei E, et al. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using |
the direct-Sun DOAS technique: Intercomparisons and application to OMI validation [J]. Journal of Geophysical Research: | |
Atmospheres, 2009, 114: D13307. | |
[23] | Tzortziou M, Herman J R, Cede A, et al. High precision, absolute total column ozone measurements from the Pandora |
spectrometer system: Comparisons with data from a Brewer double monochromator and Aura OMI [J]. Journal of Geophysical | |
Research: Atmospheres, 2012, 117: D16303. | |
[24] | Chen X P, Xian L, Ju T Z, et al. Study of spatial and temporal distribution of ozone and its influencing factors in Ningxia based |
on OMI [J]. Journal of Ecology and Rural Environment, 2019, 35(2): 167-173. | |
陈雪萍, 咸龙, 巨天珍, 等. 基于OMI 的宁夏臭氧时空分布特征及影响因素研究[J]. 生态与农村环境学报, 2019, 35(2): | |
16 | 7-173. |
[25] | Hu Y M. Study on the Tropospheric Ozone Column Retrieval and Validation in China [D]. Beijing: Chinese Academy of |
Meteorological Sciences, 2019. | |
胡玥明. 中国地区对流层臭氧总量的卫星反演与验证研究[D]. 北京: 中国气象科学研究院, 2019. | |
[26] | Hu Y M, Yan H H, Zhang X Y, et al. Comparing OMI-TOMS and OMI-DOAS total ozone column in China [J]. Meteorological |
Monthly, 2019, 45(3): 362-370. | |
胡玥明, 闫欢欢, 张兴赢, 等. OMI-TOMS 与OMI-DOAS 臭氧柱总量产品在中国地区的比较[J]. 气象, 2019, 45(3): | |
36 | 2-370. |
[27] | Herman J, Evans R, Cede A, et al. Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer |
in Boulder, Colorado [J]. Atmospheric Measurement Techniques, 2015, 8(8): 3407-3418. | |
[28] | Reed A J, Thompson A M, Kollonige D E, et al. Effects of local meteorology and aerosols on ozone and nitrogen dioxide |
retrievals from OMI and Pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011 [J]. Journal of Atmospheric | |
Chemistry, 2015, 72(3/4): 455-482. | |
[29] | Zhang L, Zheng X D, Bian L G, et al. Comparison analysis of total ozone from satellite at Zhongshan Station in Antarctica |
and long-term ground-based measurements [J]. Science in China: Earth Science, 2017, 47(11): 1371-1382. | |
张雷, 郑向东, 卞林根. 南极中山站卫星臭氧总量与地基长期测值的对比分析[J]. 中国科学: 地球科学, 2017, 47(11): | |
13 | 71-1382. |
[30] | Cooper O R, Parrish D, Ziemke J, et al. Global distribution and trends of tropospheric ozone: An observation-based review [J]. |
Elementa: Science of the Anthropocene, 2014, 2: 000029. | |
[31] | Lambert J C, Van Roozendael M, De Mazi`ere M, et al. Investigation of pole-to-pole performances of spaceborne atmospheric |
chemistry sensors with the NDSC [J]. Journal of the atmospheric sciences, 1999, 56(2): 176-193. | |
[32] | Luo Y H. The Climate and Ecology Changes in Larsemann Hills, Antarctica and the in situ Observation of Trace Gases in |
Polar Regions [D]. Hefei: University of Science and Technology of China, 2012. | |
罗宇涵. 南极拉斯曼丘陵湖泊生态气候变化及南北极痕量气体在线监测探索[D]. 合肥: 中国科学技术大学, 2012. |
[1] | 张苏贵, 张晶晶, 寻丽娜, 孙晓兵, 熊伟, 阎庆, 李穗 . 基于多模态融合的GF-5号遥感图像云检测[J]. 大气与环境光学学报, 2023, 18(4): 371-382. |
[2] | 曹亚楠, 袁野, 郑小艺, 高金兰. 基于卫星观测安徽淮北地区水汽分布特征研究[J]. 大气与环境光学学报, 2023, 18(3): 269-278. |
[3] | 孙二昌, 麻金继, 吴文涵, 杨光, 郭金雨, . Himawari-8气溶胶变分同化对PM2.5污染模拟的改进[J]. 大气与环境光学学报, 2023, 18(1): 59-72. |
[4] | 陈晓敏, 张洪玮, 孙康闻, 吴松华, . 基于相干多普勒激光雷达的斜程湍流参数反演方法研究[J]. 大气与环境光学学报, 2023, 18(1): 1-13. |
[5] | 汪惜今, 徐青山, 范传宇, 程晨, 戚鹏, 徐赤东 . 激光雷达探测整层大气昼夜气溶胶光学厚度[J]. 大气与环境光学学报, 2023, 18(1): 14-24. |
[6] | 侯梦雨, 李正强∗, 谢一凇, 乔瑞, 谢艳清, 伽丽丽, 史正, . 国产卫星多角度偏振传感器的光谱特征云检测方法研究[J]. 大气与环境光学学报, 2022, 17(6): 598-612. |
[7] | 戴刘新, 张莹∗, 李正强, 漏嗣佳. 中国近地面PM2.5 质量浓度卫星遥感数据集比较及历史趋势分析[J]. 大气与环境光学学报, 2022, 17(6): 613-629. |
[8] | 加亦瑱, 陶明辉∗, 丁思佳, 刘航语, 曾铭裕, 陈良富. 基于卫星遥感的中国地区XCO2 和XCH4 时空分布研究[J]. 大气与环境光学学报, 2022, 17(6): 679-692. |
[9] | 汪嘉林, 熊 伟, 李大成∗, 吴 军. 弱信号亮温光谱的污染气体快速识别算法[J]. 大气与环境光学学报, 2022, 17(5): 542-549. |
[10] | 崔 桐, 陈相成, 戴光耀, 张洪玮, 王琪超, 吴松华, ∗. 高分辨率变焦式连续波测风激光雷达设计与实验[J]. 大气与环境光学学报, 2022, 17(4): 393-408. |
[11] | 陈 标, 吴 东, ∗. 基于CALIOP 和MODIS 的北极地区海雾检测研究[J]. 大气与环境光学学报, 2022, 17(2): 267-278. |
[12] | 张馨丹, 李 雷∗, 陈 澄, 桂 柯, 郑 宇, 梁苑新, 要文瑞, 车慧正. 气溶胶组分反演方法光学辐射产品 精度的综合分析[J]. 大气与环境光学学报, 2022, 17(1): 160-170. |
[13] | 杨东上, 曾 议, 罗宇涵, 周海金, 司福祺∗, 刘文清. 基于EMI 遥感NO2 技术监测澳洲森林火灾活动[J]. 大气与环境光学学报, 2021, 16(3): 207-214. |
[14] | 叶函函, 王先华∗, 吴时超, 李 超, 李志伟, 施海亮, 熊 伟. 高分五号卫星GMI 大气CO2 反演方法[J]. 大气与环境光学学报, 2021, 16(3): 231-238. |
[15] | 王佳佳, 孙晓兵∗, 提汝芳, 余海啸, . 海洋上空云多角度偏振辐射阈值检测方法研究[J]. 大气与环境光学学报, 2021, 16(3): 247-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||