大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (1): 59-72.
孙二昌 1,2, 麻金继 1,2*, 吴文涵 1,2, 杨光 1,2, 郭金雨 1,2
收稿日期:
2020-12-15
修回日期:
2021-01-16
出版日期:
2023-01-28
发布日期:
2023-02-08
通讯作者:
E-mail: jinjima@ahnu.edu.cn
E-mail:jinjima@ahnu.edu.cn
作者简介:
孙二昌 (1995- ), 安徽滁州人, 硕士研究生, 主要从事大气环境遥感与应用方面的研究。E-mail: sunerchang@ahnu.edu.cn
基金资助:
SUN Erchang 1,2, MA Jinji 1,2*, WU Wenhan 1,2, YANG Guang 1,2, GUO Jinyu 1,2
Received:
2020-12-15
Revised:
2021-01-16
Published:
2023-01-28
Online:
2023-02-08
Contact:
Jinji MA
E-mail:jinjima@ahnu.edu.cn
摘要: 利用地球静止轨道卫星Himawari-8 气溶胶光学厚度 (AOD) 产品能够估算空间覆盖范围广、时间分辨率高的 近地表 PM2.5 浓度。基于三维变分同化系统将AOD估算得到的 PM2.5 资料同化进入WRF-Chem大气化学模式中, 通过 控制实验与同化实验的对比与分析, 探讨了AOD估算得到的PM2.5资料同化对 PM2.5 污染模拟的改进作用。实验结果 表明: (1) AOD估算得到的 PM2.5 资料同化能够改进 PM2.5 污染模拟效果;(2) PM2.5 污染模拟改进效果存在时空差异。 此外, 与其他研究中使用AOD观测算子直接同化AOD的方法相比, 该方法的操作更加简单。
中图分类号:
孙二昌, 麻金继, 吴文涵, 杨光, 郭金雨, . Himawari-8气溶胶变分同化对PM2.5污染模拟的改进[J]. 大气与环境光学学报, 2023, 18(1): 59-72.
SUN Erchang , MA Jinji , WU Wenhan , YANG Guang , GUO Jinyu , . Improvement of PM2.5 predictions via variational assimilation of Himawari-8 satellite AOD product[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 59-72.
[1] | Xue T, Liu J, Zhang Q, et al. Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013― |
20 | 17 [J]. Science China Earth Sciences, 2020, 04(50): 441-452. |
薛涛, 刘俊, 张强, 等. 2013~2017 年中国PM2.5污染的快速改善及其健康效益 [J]. 中国科学:地球科学, 2020, 04(50): | |
44 | 1-452. |
[2] | Wang J K, Zhang H D, Gui H L, et al. Relationship between atmospheric visibility and PM2.5 concentrations and distributions |
[J] | Environmental Science, 2019, 40(7): 2985-2993. |
王继康, 张恒德, 桂海林, 等. 能见度与PM2.5浓度关系及其分布特征 [J]. 环境科学, 2019, 40(7): 2985-2993. | |
[3] | Rosenfeld D, Zhu Y N, Wang M H, et al. Aerosol-driven droplet concentrations dominate coverage and water of oceanic lowlevel |
clouds [J]. Science, 2019, 363(6427): eaav0566. | |
[4] | Li Z Q. Impact of aerosols on the weather, climate and environment of China: An overview [J]. Transactions of Atmospheric |
Sciences, 2020, 43(1): 76-92. | |
李占清. 气溶胶对中国天气、气候和环境影响综述 [J]. 大气科学学报, 2020, 43(1): 76-92. | |
[5] | Xue W B, Wang J N, Yang J T, et al. Domestic and foreign research progress of air quality model [J]. Environment and |
Sustainable Development, 2013, 38(3): 14-20. | |
薛文博, 王金南, 杨金田, 等. 国内外空气质量模型研究进展 [J]. 环境与可持续发展, 2013, 38(3): 14-20. | |
[6] | Srivastava R, Bran S H. Impact of dynamical and microphysical schemes on black carbon prediction in a regional climate |
model over India [J]. Environmental Science and Pollution Research, 2018, 25(15): 14844-14855. | |
[7] | Gilliam R C, Hogrefe C, Godowitch J M, et al. Impact of inherent meteorology uncertainty on air quality model predictions |
[J] | Journal of Geophysical Research: Atmospheres, 2015, 120(23): 12259-12280. |
[8] | Derwent R G. Monte Carlo analyses of the uncertainties in the predictions from global tropospheric ozone models: |
Tropospheric burdens and seasonal cycles [J]. Atmospheric Environment, 2020, 231: 117545. | |
[9] | Hu Y W, Zang Z L, Ma X Y, et al. Research on the effects of assimilation meteorological observation data on aerosol |
concentration [J]. China Environmental Science, 2019, 39(2): 523-532. | |
胡译文, 臧增亮, 马晓燕, 等. 气象资料同化对PM2.5预报影响的模拟分析 [J]. 中国环境科学, 2019, 39(2): 523-532. | |
[10] | Bocquet M, Elbern H, Eskes H, et al. Data assimilation in atmospheric chemistry models: Current status and future prospects |
for coupled chemistry meteorology models [J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5325-5358. | |
[11] | Zhu J, Tang X, Wang Z F, et al. A review of air quality data assimilation methods and their application [J]. Chinese Journal |
of Atmospheric Sciences, 2018, 42(3): 607-620. | |
朱 江, 唐 晓, 王自发, 等. 大气污染资料同化与应用综述 [J]. 大气科学, 2018, 42(3): 607-620. | |
[12] | Li X, Liu F, Fang M. Hamonizing models and observations: Data assimilation in Earth system science[J]. Science China |
Earth Sciences, 2020, 50(9): 1185-1194 | |
李 新, 刘 丰, 方 苗. 模型与观测的和弦: 地球系统科学中的数据同化 [J]. 中国科学: 地球科学, 2020, 50(9): 1185-1194. | |
[13] | Feng S Z, Jiang F, Jiang Z . Impact of 3DVAR assimilation of surface PM2.5 observations on PM2.5 forecasts over China during |
wintertime [J]. Atmospheric Environment, 2018, 187: 34-49. | |
[14] | Werner M, Kryza M, Pagowski M. Assimilation of PM2.5 ground base observations to two chemical schemes in WRF-Chem— |
The results for the winter and summer period [J]. Atmospheric Environment, 2019, 200: 178-189. | |
[15] | Bessho K, Date K J, Hayashi M, et al. An introduction to Himawari-8/9—Japan's new-generation geostationary |
meteorological satellites [J]. Journal of the Meteorological Society of Japan Ser II, 2016, 94(2): 151-183. | |
[16] | Zhang T X, Zang L, Mao F Y, et al. Evaluation of Himawari-8/AHI, MERRA-2, and CAMS aerosol products over China |
[J] | Remote Sensing, 2020, 12(10): 1684. |
[17] | Wei H N, Wang W Z, Xu F N, et al. Evaluation and application of the Himawari-8 aerosol products [J]. Remote Sensing |
Technology and Application, 2019, 34(5): 1005-1015. | |
韦海宁, 王维真, 徐菲楠, 等. Himawari-8 气溶胶产品的验证及应用 [J]. 遥感技术与应用, 2019, 34(5): 1005-1015. | |
[18] | Zhao L, Xin J Y, Yang L K, et al. Validation analysis of Himawari-8 aerosol optical depth products [J]. Chinese Journal of |
Atmospheric Sciences, 2020, 44(3): 455-471. | |
赵 垒, 辛金元, 杨磊库, 等. Himawari-8气溶胶光学厚度产品的验证分析 [J]. 大气科学, 2020, 44(3): 455-471. | |
[19] | Hong J, Mao F, Min Q. Improved PM2.5 predictions of WRF-Chem via the integration of Himawari-8 satellite data and |
ground observations [J]. Environmental Pollution, 2020, 263: 114451. | |
[20] | Yumimoto K, Nagao T M, Kikuchi M, et al. Aerosol data assimilation using data from Himawari-8, a next-generation |
geostationary meteorological satellite [J]. Geophysical Research Letters, 2016, 43(11): 5886-5894. | |
[21] | Xia X L, Min J, Shen F, et al. Aerosol data assimilation using data from Fengyun-4A, a next-generation geostationary |
meteorological satellite [J]. Atmospheric Environment, 2020, 237: 117695. | |
[22] | Yao F, Wu J S, Li W F, et al. Estimating daily PM2.5 concentrations in Beijing using 750-m VIIRS IP AOD retrievals and a |
nested spatiotemporal statistical model [J]. Remote Sensing, 2019, 11(7): 841-860. | |
[23] | Grell G A, Peckham S E, Schmitz R, et al. Fully coupled "online" chemistry within the WRF model [J]. Atmospheric |
Environment, 2005, 39(37): 6957-6975. | |
[24] | Pagowski M, Grell G A, McKeen S A, et al. Three-dimensional variational data assimilation of ozone and fine particulate |
matter observations: Some results using the Weather Research and Forecasting-Chemistry model and Grid-point Statistical | |
Interpolation [J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(653): 2013-2024. | |
[25] | Ma J W, Qin S X. Recent advances and development of data assimilation algorithms [J]. Advances in Earth Science, 2012, 27 |
(7) | : 747-757. |
马建文, 秦思娴. 数据同化算法研究现状综述 [J]. 地球科学进展, 2012, 27(7): 747-757. | |
[26] | Pagowski M, Liu Z, Grell G A, et al. Implementation of aerosol assimilation in gridpoint statistical interpolation (v. 3.2) and |
WRF-chem (v. 3.4.1) [J]. Geoscientific Model Development, 2014, 7(4): 1621-1627. | |
[27] | Descombes G, Auligné T, Vandenberghe F, et al. Generalized background error covariance matrix model (GEN_BE v2.0) |
[J] | Geoscientific Model Development, 2015, 8(3): 669-696. |
[28] | Zang Z L, Hao Z L, Li Y, et al. Background error covariance with balance constraints for aerosol species and applications in |
variational data assimilation [J]. Geoscientific Model Development, 2016, 9(8): 2623-2638. | |
[29] | Xu R, Gui H L, Jiang Q, et al. Analysis of the December 2019 atmospheric circulation and weather [J]. Meteorological |
Monthly, 2020, 46(3): 441-448. | |
徐 冉, 桂海林, 江 琪, 等. 2019 年12月大气环流和天气分析 [J]. 气象, 2020, 46(3): 441-448. | |
[30] | Liu L Y, Zhang Y J, Li Y S, et al. PM2.5 inversion using remote sensing data in Eastern China based on deep learning [J]. |
Environmental Science, 2020, 41(4): 1513-1519. | |
刘林钰, 张永军, 李彦胜, 等. 基于深度学习的华东地区PM2.5浓度遥感反演 [J]. 环境科学, 2020, 41(4): 1513-1519. | |
[31] | Wang D, You W, Zang Z, et al. A three-dimensional variational data assimilation system for a size-resolved aerosol model: |
Implementation and application for particulate matter and gaseous pollutant forecasts across China [J]. Scientia Sinica | |
(Terrae), 2020, 50(9): 1302-1315. | |
汪代春, 尤 伟, 臧增亮, 等. 气溶胶和气态污染物三维变分协同同化 [J]. 中国科学: 地球科学, 2020, 50(9): 1302-1315. | |
[32] | Jiang Z, Liu Z, Wang T, et al. Probing into the impact of 3DVAR assimilation of surface PM10 observations over China using |
process analysis [J]. Journal of Geophysical Research Atmospheres, 2013, 118(12): 6738-6749. |
[1] | 王莉君, 周玉, 万丽娟, 程亮亮. 基于贝叶斯的大数据模型在大气污染成因分析中的应用[J]. 大气与环境光学学报, 2023, 18(3): 227-234. |
[2] | 曹媛, 宫明艳, 沈非, 麻金继, 杨光, 林锡文, . 中国区域PM2.5浓度估算以及影响因素解析[J]. 大气与环境光学学报, 2023, 18(3): 245-257. |
[3] | 陈玉宽, 王 朔, 徐学哲, 赵卫雄, 盖艳波, 方 波, 张为俊, ∗. 安徽省寿县气溶胶消光系数变化特征分析[J]. 大气与环境光学学报, 2022, 17(5): 533-541. |
[4] | 杨明亮∗, 朱宗玖. 基于LUR 模型下PM2.5 浓度的空间分布模拟分析[J]. 大气与环境光学学报, 2022, 17(3): 347-359. |
[5] | 彭立平, 黄 毅∗, 郑凯莉. 旅游活动强度变化下旅游地大气PM2.5浓度响应研究[J]. 大气与环境光学学报, 2021, 16(6): 471-482. |
[6] | 贾宏亮, 罗 俊, 肖东升∗. 基于遥感数据和GWR 模型的成都PM2.5 浓度时空分布特征研究[J]. 大气与环境光学学报, 2021, 16(6): 529-540. |
[7] | 陈 杰, 李正强∗, 常文渊∗, 张 莹, 魏瑗瑗, 谢一凇, 葛邦宇, 张 驰, . 基于改进GSI 系统的气溶胶变分同化对WRF-Chem PM2.5 分析和预报的影响评估[J]. 大气与环境光学学报, 2020, 15(5): 321-333. |
[8] | 施益强, 陈坰烽, 王 坚, 黄宝燕, 吴 君, 陈颖锋, 肖钟湧, ∗. 厦门市MODIS 气溶胶光学厚度与PM2.5 的时空特征及其相关性[J]. 大气与环境光学学报, 2020, 15(5): 334-346. |
[9] | 郑凯莉, 黄 毅∗, 姚小云, 胡晓琰. 张家界市PM2.5、NO2 与旅游活动及天气因素的相关性分析[J]. 大气与环境光学学报, 2020, 15(5): 347-356. |
[10] | 马潇瑶, 肖正辉∗, 何立志, 曹运江. 湘潭市PM2.5 中二次水溶性无机离子及其 气态前体物的污染特征[J]. 大气与环境光学学报, 2020, 15(4): 296-304. |
[11] | 潘楠 卢新卫. 2016年春节期间西安市大气颗粒物中多环芳烃的污染特征[J]. 大气与环境光学学报, 2018, 13(3): 208-217. |
[12] | 曹景丽 王明仕 韩文生 桂晨露 宋党育. 河南省PM2.5时空分布特征研究[J]. 大气与环境光学学报, 2018, 13(1): 42-51. |
[13] | 张连科 鲁尚发 焦坤灵 王维大 张保生 于维佳. 包头城区冬春大气颗粒物污染特征及其与气象条件关系[J]. 大气与环境光学学报, 2017, 12(6): 401-410. |
[14] | 徐强 王东琴 王旭 白进强 吴振森. 灰霾中主要污染物粒子散射特性的研究[J]. 大气与环境光学学报, 2017, 12(2): 100-108. |
[15] | 汪官镇 刘金培 陈华友 肖鹏 蒋一聪 杜博文. 基于VAR模型的PM2.5与其它空气污染物的动态关系研究分析[J]. 大气与环境光学学报, 2016, 11(2): 91-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||