[1] |
Song G X, Jiang L L, Chen G H, et al. A time-series study on the relationship between gaseous airpollutants and daily
|
|
mortality in Shanghai [J]. Journal of Environment and Health, 2006, 23(5): 390-393.
|
|
宋桂香, 江莉莉, 陈国海, 等. 上海市大气气态污染物与居民每日死亡关系的时间序列研究 [J]. 环境与健康杂志, 2006,
|
23 |
(5): 390-393.
|
[2] |
Zhang T Y, Shen N C, Zhao X, et al. Spatiotemporal variation caracteristics of ozone and its population exposure risk assessment in Chengdu-Chongqing urban agglomeration during 2015 to 2019 [J]. Acta Scientiae Circumstantiae, 2021, 41
|
(10) |
: 4188-4199.
|
|
张天岳, 沈楠驰, 赵 雪, 等. 2015—2019 年成渝城市群臭氧浓度时空变化特征及人口暴露风险评价 [J]. 环境科学学报,
|
20 |
21, 41(10): 4188-4199.
|
[3] |
Jiang D S. Air quality assessment and exposure risk of different groups in Fujian Province in 2016―2018 [J]. Low Carbon
|
|
World, 2019, 9(3): 12-13.
|
|
蒋冬升. 福建省2016—2018年空气质量评价及不同人群暴露风险研究 [J]. 低碳世界, 2019, 9(3): 12-13.
|
[4] |
Wang Q Q, Ye Y J, Zhang J Y, et al. Multi-site analysis of acute effects of air pollutants combination exposure on mortality
|
|
in Jiangsu Province, China [J]. Chinese Journalof Preventive Medicine, 2019, 53(1): 86-92.
|
|
汪庆庆, 叶云杰, 张嘉尧, 等. 江苏省大气污染物联合暴露对人群死亡风险急性效应的多中心研究 [J]. 中华预防医学杂
|
|
志, 2019, 53(1): 86-92.
|
[5] |
Shi X Q, Zhao C F, Jiang J H, et al. Spatial representativeness of PM2.5 concentrations obtained using observations from
|
|
network stations [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(6): 3145-3158.
|
[6] |
Briggs D J, Collins S, Elliott P, et al. Mapping urban air pollution using GIS: A regression-based approach [J]. International
|
|
Journal of Geographical Information Science, 1997, 11(7): 699-718.
|
[7] |
Zou Y X, Wu Z F, Cao Z. Assessing PM2.5 exposure risk by coupling land use regression model andpopulation weighted
|
|
model [J]. Journal of Geo-Information Science, 2019, 21(7): 1018-1028.
|
|
邹雨轩, 吴志峰, 曹 峥. 耦合土地利用回归与人口加权模型的PM2.5暴露风险评估 [J]. 地球信息科学学报, 2019, 21(7):
|
10 |
18-1028.
|
[8] |
Zhao X, Hou L L, Wang X L, et al. Simulation of spatial distribution of PM2.5 and PM10 concentrations in Beijing in 2019
|
|
based on LUR model [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4060-4069.
|
|
赵 雪, 侯丽丽, 王鑫龙, 等. 基于LUR模型的2019 年北京地区PM2.5与PM10浓度空间分异模拟 [J]. 环境科学学报, 2020,
|
40 |
(11): 4060-4069.
|
[9] |
Feng C L, Li R K. Spatiotemporal variation analysis of air pollution from 2013 to 2019 in Beijing based on land use regression
|
|
model [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1231-1238.
|
|
冯春莉, 李润奎. 基于土地利用回归模型的北京市2013—2019 年大气污染时空变化分析 [J]. 环境科学学报, 2021, 41
|
(4) |
: 1231-1238.
|
[10] |
Wei S M, Pan J H, Tuo W L. Estimation and spatial-temporal distribution characteristic of PM2.5 concentration by remote
|
|
sensing in China in 2015 [J]. Remote Sensing Technology and Application, 2020, 35(4): 845-854.
|
|
魏石梅, 潘竟虎, 妥文亮. 2015 年中国PM2.5浓度遥感估算与时空分布特征 [J]. 遥感技术与应用, 2020, 35(4): 845-854.
|
[11] |
Deng Y, Liu J P, Liu Y, et al. Spatial distribution estimation of PM2.5 concentration Beijing by applying Bayesian geographic
|
|
weighted regression model [J]. Science of Surveying and Mapping, 2018, 43(10): 39-45.
|
|
邓 悦, 刘纪平, 刘 洋, 等. 北京PM2.5浓度空间分布的贝叶斯地理加权回归模拟 [J]. 测绘科学, 2018, 43(10): 39-45.
|
[12] |
Zhan Y, Luo Y Z, Deng X F, et al. Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and
|
|
spatiotemporal kriging model [J]. Environmental Science& Technology, 2018, 52(7): 4180-4189.
|
[13] |
Luo A R. Research of Prediction Model on Atmospheric PM2.5 Concentration Using Support Vector Regression [D]. Beijing:
|
|
Beijing University of Technology, 2018.
|
|
罗奥荣. 基于支持向量回归机的大气PM2.5浓度预测模型研究 [D]. 北京: 北京工业大学, 2018.
|
[14] |
Yang L. Optimal-Combined Model for Air Quality Index Forecasting—5 Cities in North China [D]. Lanzhou: Lanzhou
|
|
University, 2019.
|
|
杨 玲. 最优-组合模型的空气质量指标预测: 以中国华北的5城市为例 [D]. 兰州: 兰州大学, 2019.
|
[15] |
Yuan Q Q, Shen H F, Li T W, et al. Deep learning in environmental remote sensing: Achievements and challenges [J]. Remote Sensing of Environment, 2020, 241: 111716.
|
[16] |
Zaytar M A, Amrani C E. Machine learning methods for air quality monitoring [P]. Networking, Information Systems &
|
|
Security, 2020.
|
[17] |
Rodríguez J D, Pérez A, Lozano J A. Sensitivity analysis of kappa-fold cross validation in prediction error estimation [J].
|
|
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 569-575.
|
[18] |
Li T W, Shen H F, Zeng C, et al. A validation approach considering the uneven distribution of ground stations for satellitebased
|
|
PM2.5 estimation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:
|
13 |
12-1321.
|
[19] |
Li X W, Zhang Y, Jiang S, et al. Preliminary application of atmospheric pollution monitoring in Jiangsu Province with
|
|
TROPOMI sensor onboard sentinel-5P satellite [J]. Environmental Monitoring and Forewarning, 2019, 11(2): 10-16.
|
|
李旭文, 张 悦, 姜 晟, 等. "哨兵-5P"卫星TROPOMI传感器在江苏省域大气污染监测中的初步应用 [J]. 环境监控与预
|
|
警, 2019, 11(2): 10-16.
|
[20] |
Baldi P. Gradient descent learning algorithm overview: A general dynamical systems perspective [J]. IEEE Transactions on
|
|
Neural Networks, 1995, 6(1): 182-195.
|
[21] |
Liu J W, Liu Y, Luo X L. Research and development on deep learning [J]. Application Research of Computers, 2014, 31(7):
|
19 |
21-1930.
|
|
刘建伟, 刘 媛, 罗雄麟. 深度学习研究进展 [J]. 计算机应用研究, 2014, 31(7): 1921-1930.
|
[22] |
Qin W Z. The Basic Theoretics and Application Research on Geographically Weighted Regression [D]. Shanghai: Tongji
|
|
University, 2007.
|
|
覃文忠. 地理加权回归基本理论与应用研究 [D]. 上海: 同济大学, 2007.
|
[23] |
Tang F M. Study of Support Vector Machines Algorithm Based on Statistical Learning Theory [D]. Wuhan: Huazhong
|
|
University of Science and Technology, 2005.
|
|
唐发明. 基于统计学习理论的支持向量机算法研究 [D]. 武汉: 华中科技大学, 2005.
|
[24] |
Wei J Y, Ru F. Forecasting the traffic volume by the model of GRNN and studing it's realization [J]. Journal of Changsha
|
|
Communications University, 2006, 22(2): 46-50.
|
|
魏晋雁, 茹 锋. 采用GRNN模型进行交通量预测及实现研究 [J]. 长沙交通学院学报, 2006, 22(2): 46-50.
|
[25] |
Du X, Feng J Y, Lv S Q, et al. PM2.5 concentration prediction model based on random forest regression analysis [J].
|
|
Telecommunications Science, 2017, 33(7): 66-75.
|
|
杜 续, 冯景瑜, 吕少卿, 等. 基于随机森林回归分析的PM2.5浓度预测模型 [J]. 电信科学, 2017, 33(7): 66-75.
|
[26] |
Diego R J, Pérez A, Antonio L J. Sensitivity analysis of kappa-fold cross validation in prediction error estimation [J]. IEEE
|
|
transactions on pattern analysis and machine intelligence, 2010, 32(3): 569-575.
|
[27] |
Li T W, Shen H F, Yuan Q Q, et al. Geographically and temporally weighted neural networks for satellite-based mapping of
|
|
ground-level PM2.5 [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 178-188.
|