大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (4): 339-356.
• 高分五号 02 星偏振载荷在轨测试和信息处理 • 上一篇 下一篇
翟颖超 1, 王涵 2*, 赵梅如 3, 陈科 1, 李林森 1
收稿日期:
2022-10-13
修回日期:
2022-12-16
出版日期:
2023-07-28
发布日期:
2023-08-14
通讯作者:
E-mail: ms.h.wang@cumt.edu.cn
E-mail:ms.h.wang@163.com
作者简介:
翟颖超 (1998- ), 女, 河南鹿邑人, 硕士研究生, 主要从事大气遥感方面的研究。E-mail: 212004010025@home.hpu.edu.cn
基金资助:
ZHAI Yingchao 1, WANG Han 2*, ZHAO Meiru 3, CHEN Ke 1, LI Linsen 1
Received:
2022-10-13
Revised:
2022-12-16
Published:
2023-07-28
Online:
2023-08-14
摘要: 山区复杂的地形特征会导致地表反射率估算误差增加, 降低地气解耦精度, 进而影响气溶胶反演精度。当前 应用较广泛的反演方法有基于波段关系估算地表反射的暗目标算法 (DT)、基于区域地表反射率库的深蓝算法 (DB) 和 基于双向反射分布函数 (BRDF)、双向偏振分布函数 (BPDF) 模型估算地表反射率的GRASP (Generalized retrieval of atmosphere and surface properties) 算法。为探究适合山区气溶胶遥感的地气解耦方法, 利用地面气溶胶自动观测网 (AERONET) 气溶胶产品 (AOD_A) 对比分析了2005 年至2013 年间POLDER-3 (Polarization and directionality of the earth's reflectances) 的GRASP 气溶胶产品 (AOD_G)、中等分辨率成像光谱仪 (MODIS) 的DT 气溶胶产品 (AOD_DT) 和DB气溶胶产品 (AOD_DB) 在中国区域的精度。结果显示, 非山区站点处AOD_G与AOD_A整体相关性最高 (R = 0.921), AOD_DT 和AOD_DB 总体精度差异不大, 但山区AOD_G 高于期望误差的比例达79.87%, AOD_DT 和 AOD_DB高估程度分别增加了近30%和20%。在河北兴隆和兰州大学半干旱气候与环境观测站 (SACOL) 两个山区 站点分季节验证显示, 植被覆盖度低的秋冬季节三种卫星产品精度均存在下降趋势, 表明除去地表植被对反射率的 影响后, 山区地形影响了地气解耦精度。进一步分析显示, 山区起伏地形对基于BRDF、BPDF模型的地气解耦方法影 响较大; 在山区等起伏地表上空, 多角度观测的地表波段关系更有利于精确估算地表反射, 而在城区BRDF、BPDF模 型与波段关系估算地表反射的误差水平接近。研究结果为进一步优化多角度观测 (如高分五号DPC) 的山区气溶胶反 演算法提供了新的方向。
中图分类号:
翟颖超, 王涵, 赵梅如, 陈科, 李林森 . 山区气溶胶多角度偏振遥感地气解耦方法评估[J]. 大气与环境光学学报, 2023, 18(4): 339-356.
ZHAI Yingchao , WANG Han , ZHAO Meiru , CHEN Ke , LI Linsen . Evalutaion of land-atmospheric decoupling methods for mountainous aerosol multi-angle polarization remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(4): 339-356.
[1] | Jin J N, Zhao W J, Yang X C, et al. Validation and temporal spatial distribution analysis of MODIS and Himawari-8 fine |
mode aerosol products in Asia [J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1066-1085. | |
金囝囡, 赵文吉, 杨兴川, 等. 亚洲地区MODIS和Himawari-8 细模态气溶胶产品验证及其时空分布分析 [J]. 环境科学学 | |
报, 2019, 39(4): 1066-1085. | |
[2] | Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1 μm channel-correlation with visible reflectance for use in |
remote sensing of aerosol [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1286-1298. | |
[3] | Kaufman Y J, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery [J]. |
International Journal of Remote Sensing, 1988, 9(8): 1357-1381. | |
[4] | Hsu N C, Tsay S C, King M D, et al. Aerosol properties over bright-reflecting source regions [J]. IEEE Transactions on |
Geoscience and Remote Sensing, 2004, 42(3): 557-569. | |
[5] | Deuzé J L, Bréon F M, Deschamps P Y, et al. Analysis of the POLDER (POLarization and directionality of earth's |
reflectances) airborne instrument observations over land surfaces [J]. Remote Sensing of Environment, 1993, 45(2): 137-154. | |
[6] | Duan M Z, Lv D R. Simultaneously retrieving aerosol optical depth and surface albedo over land from POLDER's multi-angle |
polarized measurements I: Theory and simulations [J]. Chinese Journal of Atmospheric Sciences, 2007, 31(5): 757-765. | |
段民征, 吕达仁. 利用多角度POLDER偏振资料实现陆地上空大气气溶胶光学厚度和地表反照率的同时反演 I. 理论与 | |
模拟 [J]. 大气科学, 2007, 31(5): 757-765. | |
[7] | Sun X, Zhao H J. Retrieval algorithm for optical parameters of aerosol over land surface from POLDER data [J]. Acta Optica |
Sinica, 2009, 29(7): 1772-1777. | |
孙 夏, 赵慧洁. 基于POLDER数据反演陆地上空气溶胶光学特性 [J]. 光学学报, 2009, 29(7): 1772-1777. | |
[8] | Wang Z T, Chen L F, Li S S. The retrieval of AOD over land surfaces in China from PARASOL [J]. Remote Sensing |
Information, 2009, 24(6): 49-54. | |
王中挺, 陈良富, 李莘莘. 利用PARASOL数据反演陆地气溶胶光学厚度 [J]. 遥感信息, 2009, 24(6): 49-54. | |
[9] | Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol |
Robotic Network (AERONET) Sun and sky radiance measurements [J]. Journal of Geophysical Research: Atmospheres, 2000, | |
10 | 5(D8): 9791-9806. |
[10] | Dubovik O, Sinyuk A, Lapyonok T, et al. Application of spheroid models to account for aerosol particle nonsphericity in |
remote sensing of desert dust [J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D11): D11208. | |
[11] | Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol |
properties from spectral multi-angle polarimetric satellite observations [J]. Atmospheric Measurement Techniques, 2011, 4(5): | |
97 | 5-1018. |
[12] | Chen C, Dubovik O, Fuertes D, et al. Validation of GRASP algorithm product from POLDER/PARASOL data and |
assessment of multi-angular polarimetry potential for aerosol monitoring [J]. Earth System Science Data, 2020, 12(4): 3573- | |
3620. | |
[13] | Dubovik O, Li Z Q, Mishchenko M I, et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, |
methodologies, results, and perspectives [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: | |
47 | 4-511. |
[14] | Li Z Q, Hou W Z, Hong J, et al. Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over |
land from satellite observation [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 21-37. | |
[15] | Chen L F, Shang H Z, Fan M, et al. Mission overview of the GF-5 satellite for atmospheric parameter monitoring [J]. |
National Remote Sensing Bulletin, 2021, 25(9): 1917-1931. | |
陈良富, 尚华哲, 范 萌, 等. 高分五号卫星大气参数探测综述 [J]. 遥感学报, 2021, 25(9): 1917-1931. | |
[16] | Hasekamp O P, Landgraf J. Retrieval of aerosol properties over land surfaces: Capabilities of multiple-viewing-angle intensity |
and polarization measurements [J]. Applied Optics, 2007, 46(16): 3332-3344. | |
[17] | Wang H, Yang L K, Du W B, et al. Inversion of aerosol optical depth over land surface from airborne polarimetric |
measurements [J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1019-1024. | |
王 涵, 杨磊库, 都伟冰, 等. 航空偏振遥感数据反演陆地上空气溶胶光学厚度 [J]. 光谱学与光谱分析, 2018, 38(4): 1019- | |
1024. | |
[18] | Kaufman Y J, Tanré D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate |
resolution imaging spectroradiometer [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 17051-17067. | |
[19] | Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land |
from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance [J]. Journal of Geophysical Research: | |
Atmospheres, 2007, 112(D13): D13211. | |
[20] | Hsu N C, Jeong M J, Bettenhausen C, et al. Enhanced Deep Blue aerosol retrieval algorithm: The second generation [J]. |
Journal of Geophysical Research: Atmospheres, 2013, 118(16): 9296-9315. | |
[21] | Dubovik O, Lapyonok T, Litvinov P, et al. GRASP: A versatile algorithm for characterizing the atmosphere [J]. SPIE |
Newsroom, 2014, 25: 1-4. | |
[22] | Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of |
crown shape and mutual shadowing [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 276-292. | |
[23] | Roujean J L, Leroy M, Deschamps P Y. A bidirectional reflectance model of the Earth's surface for the correction of remote |
sensing data [J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D18): 20455-20468. | |
[24] | Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectances of natural surfaces: Spaceborne measurements and analytical |
modeling [J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650. | |
[25] | Yan K, Li H L, Song W J, et al. Extending a linear kernel-driven BRDF model to realistically simulate reflectance anisotropy |
over rugged terrain [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. | |
[26] | Shu C M, Sun X B, Wang H, et al. Model optimization of didirectional polarization reflectance distribution function of land |
surface based on airborne polarimetric data [J]. Journal of Atmospheric and Environmental Optics, 2016, 11(2): 125-133. | |
舒存铭, 孙晓兵, 王 涵, 等. 基于航空偏振数据的地表BPDF 模型优化研究 [J]. 大气与环境光学学报, 2016, 11(2): | |
12 | 5-133. |
[27] | Waquet F, Léon J F, Cairns B, et al. Analysis of the spectral and angular response of the vegetated surface polarization for the |
purpose of aerosol remote sensing over land [J]. Applied Optics, 2009, 48(6): 1228-1236. | |
[28] | Holben B N, Eck T F, Slutsker I, et al. AERONET―A federated instrument network and data archive for aerosol |
characterization [J]. Remote Sensing of Environment, 1998, 66(1): 1-16. | |
[29] | Che H Z, Zhang X Y, Chen H B, et al. Instrument calibration and aerosol optical depth validation of the China Aerosol |
Remote Sensing Network [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D3): D03206. | |
[30] | Che H Z, Xia X G, Zhao H J, et al. Spatial distribution of aerosol microphysical and optical properties and direct radiative |
effect from the China Aerosol Remote Sensing Network [J]. Atmospheric Chemistry and Physics, 2019, 19(18): 11843-11864. | |
[31] | Li Z Q, Xu H, Li K T, et al. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar |
atmospheric aerosols over China: An overview of Sun-sky radiometer observation network (SONET) measurements [J]. | |
Bulletin of the American Meteorological Society, 2018, 99(4): 739-755. | |
[32] | Wang L. A brief introduction to US shuttle radar topography mission [J]. Bulletin of Surveying and Mapping, 2000, (12): |
38 | -40. |
汪 凌. 美国航天飞机雷达地形测绘使命简介 [J]. 测绘通报, 2000, (12): 38-40. | |
[33] | Sayer A M, Hsu N C, Lee J, et al. Validation of SOAR VIIRS over-water aerosol retrievals and context within the global |
satellite aerosol data record [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(23): 13496-13526. | |
[34] | Sogacheva L, Popp T, Sayer A M, et al. Merging regional and global aerosol optical depth records from major available |
satellite products [J]. Atmospheric Chemistry and Physics, 2020, 20(4): 2031-2056. | |
[35] | Eck T F, Holben B N, Reid J S, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert |
dust aerosols [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D24): 31333-31349. | |
[36] | Tan Y, Li E, Zhang Z, et al. Validation of POLDER-3/GRASP aerosol products using AERONET measurements over China |
[J] | Atmospheric Environment, 2019, 215: 116893. |
[1] | 朱思峰, 朱梦瑶, 伽丽丽, 许华, 李正强, 谢一凇, 洪津, 涂碧海, 孟炳寰 . 高分五号 02 星多角度偏振成像仪在轨辐射性能初步评价[J]. 大气与环境光学学报, 2023, 18(4): 310-322. |
[2] | 董鉴韬, 李正强, 谢一凇, 樊程, 洪津, 戴刘新, 顾浩然, 郑杨 . 基于GF-5(02) 卫星DPC数据的2022年春季陆表细粒子气溶胶光学厚度空间分布[J]. 大气与环境光学学报, 2023, 18(4): 323-338. |
[3] | 孙二昌, 麻金继, 吴文涵, 杨光, 郭金雨, . Himawari-8气溶胶变分同化对PM2.5污染模拟的改进[J]. 大气与环境光学学报, 2023, 18(1): 59-72. |
[4] | 汪惜今, 徐青山, 范传宇, 程晨, 戚鹏, 徐赤东 . 激光雷达探测整层大气昼夜气溶胶光学厚度[J]. 大气与环境光学学报, 2023, 18(1): 14-24. |
[5] | 黄冬, 李新, 张艳娜, 张允祥 . 全自动太阳光度计温控系统设计及测试[J]. 大气与环境光学学报, 2023, 18(1): 73-81. |
[6] | 侯梦雨, 李正强∗, 谢一凇, 乔瑞, 谢艳清, 伽丽丽, 史正, . 国产卫星多角度偏振传感器的光谱特征云检测方法研究[J]. 大气与环境光学学报, 2022, 17(6): 598-612. |
[7] | 王雪林, 陈文忠∗. 亚北极太平洋气溶胶光学厚度与净初级生产力的变化特征及其相关性研究[J]. 大气与环境光学学报, 2022, 17(5): 558-569. |
[8] | 杨 光, 麻金继, ∗, 孙二昌, 吴文涵, 郭金雨, 林锡文, . 2004–2018 年间中国区域气溶胶时空变化特征研究[J]. 大气与环境光学学报, 2021, 16(5): 443-456. |
[9] | 唐 燕∗, 许 睿, 孟繁玥. 中国东部典型城市群AOD 时空演变及预测[J]. 大气与环境光学学报, 2021, 16(4): 320-330. |
[10] | 提汝芳∗, 黄红莲, 刘 晓, 樊依哲, 王佳佳, 孙晓兵, 洪 津, . 基于DPC 的中国部分区域陆地气溶胶光学厚度反演[J]. 大气与环境光学学报, 2021, 16(3): 239-246. |
[11] | 王佳佳, 孙晓兵∗, 提汝芳, 余海啸, . 海洋上空云多角度偏振辐射阈值检测方法研究[J]. 大气与环境光学学报, 2021, 16(3): 247-255. |
[12] | 王子翔, 李正强, ∗, 光 洁, 佘 璐. GF-4 大气校正并行算法研究[J]. 大气与环境光学学报, 2021, 16(3): 269-282. |
[13] | 葛 鹏, 张天舒∗, 付毅宾, 项 衍. 基于AERONET 的北京地区气溶胶光学特性分析[J]. 大气与环境光学学报, 2021, 16(1): 18-27. |
[14] | 陈 杰, 李正强∗, 常文渊∗, 张 莹, 魏瑗瑗, 谢一凇, 葛邦宇, 张 驰, . 基于改进GSI 系统的气溶胶变分同化对WRF-Chem PM2.5 分析和预报的影响评估[J]. 大气与环境光学学报, 2020, 15(5): 321-333. |
[15] | 施益强, 陈坰烽, 王 坚, 黄宝燕, 吴 君, 陈颖锋, 肖钟湧, ∗. 厦门市MODIS 气溶胶光学厚度与PM2.5 的时空特征及其相关性[J]. 大气与环境光学学报, 2020, 15(5): 334-346. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 473
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 280
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||