大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (4): 371-382.

• 高分五号 02 星偏振载荷在轨测试和信息处理 • 上一篇    下一篇

基于多模态融合的GF-5号遥感图像云检测

张苏贵 1,2, 张晶晶 1,2*, 寻丽娜 1,2, 孙晓兵 3, 熊伟 3, 阎庆 1,2, 李穗 4   

  1. 1 安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230601; 2 安徽大学电气工程与自动化学院, 安徽 合肥 230601; 3 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031; 4 安徽文达信息工程学院, 安徽 合肥 231201
  • 收稿日期:2022-10-31 修回日期:2023-01-19 出版日期:2023-07-28 发布日期:2023-08-14
  • 通讯作者: E-mail: 874878644@qq.com E-mail:874878644@qq.com
  • 作者简介:张苏贵 (1997- ), 女, 江苏宿迁人, 硕士研究生, 主要从事遥感图像云检测方面的研究。 E-mail: zsg5802085@163.com
  • 基金资助:
    中国科学院通用光学定标与表征技术重点实验室开放研究基金

Cloud detection of GF-5 remote sensing image based on multimodal fusion

ZHANG Sugui 1,2, ZHANG Jingjing 1,2*, XUN Lina 1,2, SUN Xiaobing 3, XIONG Wei 3, YAN Qing 1,2, LI Sui 4   

  1. 1 Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, China; 2 School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China; 3 Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, China; 4 Anhui Wenda University of Information Engineering, Hefei 231201, China
  • Received:2022-10-31 Revised:2023-01-19 Published:2023-07-28 Online:2023-08-14
  • Contact: Jingjing ZHANG JingjingZhang E-mail:874878644@qq.com

摘要: 云检测对于遥感图像的应用具有重要意义。目前已有的云检测方法关于遥感图像的偏振信息研究较少, 性 能和泛化能力有限。为有效利用遥感图像偏振信息, 提出了一种基于深度学习的多模态融合遥感图像云检测方法并 进行了初步实验评价。该网络是一种三参数输入流架构, 具有编码器-解码器结构, 利用通道空间注意模块对遥感图 像中的反射率特征和偏振特征进行多模态融合。在解码器上采样阶段, 利用迭代注意特征融合方法融合高、低级特征 映射。评价实验数据集来源于多角度偏振成像仪 (DPC) 云产品和云掩码产品。评价实验结果表明, 所提出的网络模 型实现了良好的云检测性能, 识别准确率达到93.91%。

关键词: 云检测, 偏振信息, 多模态融合, 通道空间注意, 迭代注意特征融合

Abstract: Cloud detection is of great significance for the application of remote sensing images. However, as for the existing cloud detection methods, there is limited research on the polarization information of remote sensing images, and their performance and generalization ability are also limited. To effectively utilize the polarization information of remote sensing images, a multimodal fusion remote sensing image cloud detection method based on depth learning is proposed and its preliminary experimental evaluation is conducted. In the method, the network is a three-parameter input stream architecture with an encoderdecoder structure, and the channel-spatial attention module is used to perfom multimodal fusion of reflectance and polarization features in remote sensing images. In the upsampling stage of the decoder, the iterative attention feature fusion method is used to fuse the high- and low-level feature maps. The evaluation experimental data set comes from Directional Polarization Camera (DPC) cloud products and cloud mask products. The evaluation results show that the proposed network model achieves good cloud detection performance, with a recognition accuracy of 93.91%.

Key words: cloud detection, polarization information, multimodal fusion, channel-spatial attention; iterative attention feature fusion

中图分类号: