大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (5): 469-478.

• 大气光学 • 上一篇    下一篇

基于空间多尺度残差网络的红外与可见光图像融合

张亦孟 1, 林伟国 2*   

  1. 1 北京机电工程总体设计部, 北京 100005; 2 北京化工大学信息科学与技术学院, 北京 100029
  • 收稿日期:2022-02-17 修回日期:2022-04-08 出版日期:2023-09-28 发布日期:2023-10-11
  • 通讯作者: E-mail: linwg@mail.buct.edu.can E-mail:linwg@mail.buct.edu.can
  • 作者简介:张亦孟 (1990- ), 北京人, 工程师, 主要从事图像处理、运载器系统电气综合与健康管理方面的研究。 E-mail: zhangyimeng1990@vip.sina.com
  • 基金资助:
    辽宁省应用基础研究计划项目 (2023JH2, 101300239)

Infrared and visible images fusion with spatial multiscale residual networks

ZHANG Yimen 1, LIN Weiguo 2*   

  1. 1 Beijing System Design Institute of Electro Mechanic Engineering, Beijing 100005, China; 2 College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2022-02-17 Revised:2022-04-08 Online:2023-09-28 Published:2023-10-11
  • Contact: Lin weiguo E-mail:linwg@mail.buct.edu.can

摘要: 针对如何充分提取和融合红外与可见光图像典型特征的问题, 提出一种基于空间多尺度残差网络的图像融合 算法。首先, 将源图像输入基于空间多尺度残差模块组成的编码器网络, 通过源图像重建任务, 训练编码器自动获取 重要特征信息的能力; 然后, 引入特征金字塔结构, 设计了特征通道自注意力机制, 编码器输出的基础层和细节层进行 融合, 减小尺度噪声, 并由解码器重构出融合图像; 最后, 利用公开数据集进行定性和定量实验, 证明了改进算法在突 出红外图像目标和保留可见光图像纹理细节两方面的优势, 相比于DDcGAN算法, 新算法的标准差和平均梯度分别提 升了12.91%和47.41%。

关键词: 图像融合, 自动编码器, 空间多尺度残差模块, 通道自注意力

Abstract: To fully extract and fuse typical features of infrared and visible images, an image fusion algorithm based on spatial multi-scale residual network is proposed. Firstly, the source image is input into an encoder network composed of spatial multi-scale residual modules, and through the task of image reconstruction, the encoder network is trained to automatically obtain important features. Then, a feature pyramid and a channel self-attention are introduced, the output of basic layer and detail layer by the endoder are fused to reduce scale noise, and the fused image is reconstructed by the decoder. Finally, qualitative and quantitative experiments on public datasets are carried out, and it is demonstrated that the imporved algorithm outperforms the alternatives on highlighting infrared image targets and preserving visible image texture details. Compared with the DDcGAN algorithm, the standard deviation and average gradient of the proposed algorithm have been improved by 12.91% and 47.41%, respectively.

Key words: image fusion, auto-encoder, spatial multi-scale residual module, channel self-attention

中图分类号: