大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (5): 401-419.
• 综述 • 下一篇
王玉婷, 江贵生, 李伶俐, 张启磊, 汪亚, 刘清海, 纪娟娟, 查申龙, 张钰, 张惠, 马宏亮*
收稿日期:
2022-01-30
修回日期:
2022-03-15
出版日期:
2023-09-28
发布日期:
2023-10-11
通讯作者:
E-mail: hlgnma@foxmail.com
E-mail:hlgnma@foxmail.com
作者简介:
王玉婷 (1997- ), 女, 浙江湖州人, 硕士研究生, 主要从事光学吸收池方面的研究。 E-mail: 13615729240@163.com
基金资助:
WANG Yuting, JIANG Guisheng, LI Lingli, ZHANG Qilei, WANG Ya, LIU Qinghai, JI Juanjuan, ZHA Shenlong, ZHANG Yu, ZHANG Hui, MA Hongliang *
Received:
2022-01-30
Revised:
2022-03-15
Online:
2023-09-28
Published:
2023-10-11
Contact:
Hong-Liang MA
E-mail:hlgnma@foxmail.com
摘要: 光学气体吸收池可以模拟气体分子的吸收环境并提供较长的吸收光程, 因此被广泛应用于气体分子光谱测 量以及痕量气体检测等领域。从常温和变温两个角度综述了光学气体吸收池的发展历程, 首先介绍了应用于常温气 体测量的White 型、Chernin 型、Herriott 型、环型光学气体吸收池的结构原理以及相关应用, 并分析了相应的优缺点; 随 后总结了应用于变温气体测量的光学气体吸收池的技术工艺、主要性能指标、结构特点及应用; 最后, 对光学气体吸 收池的发展前景进行了展望。
中图分类号:
王玉婷, 江贵生, 李伶俐, 张启磊, 汪亚, 刘清海, 纪娟娟, 查申龙, 张钰, 张惠, 马宏亮. 光学气体吸收池的研究进展[J]. 大气与环境光学学报, 2023, 18(5): 401-419.
WANG Yuting, JIANG Guisheng, LI Lingli, ZHANG Qilei, WANG Ya, LIU Qinghai, JI Juanjuan, ZHA Shenlong, ZHANG Yu, ZHANG Hui, MA Hongliang . Development review of optical gas absorption cell[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 401-419.
[1] | Tang X Y, Zhang Y H, Shao M. Atmospheric Environmental Chemistry [M]. Beijing: Higher Education Press, 1990. |
唐孝炎, 张远航, 邵 敏. 大气环境化学 [M]. 北京: 高等教育出版社, 1990. | |
[2] | Tuzson B, Mangold M, Looser H, et al. Compact multipass optical cell for laser spectroscopy [J]. Optics letters, 2013, 38(3): |
25 | 7-259. |
[3] | Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption |
spectroscopy [J]. Optics Letters, 2018, 43(11): 2434-2437. | |
[4] | Tang Y Y, Liu W Q, Kan R F, et al. Measurements of NO and CO in Shanghai urban atmosphere by using quantum cascade |
lasers [J]. Optics Express, 2011, 19(21): 20224-20232. | |
[5] | Mangold M, Tuzson B, Hundt M, et al. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis [J]. |
Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2016, 33(5): 913-919. | |
[6] | Dong F Z, Kan R F, Liu W Q, et al. Tunable diode laser absorption spectroscopic technology and its applications in air quality |
monitoring [J]. Chinese Journal of Quantum Electronics, 2005, 22(3): 315-325. | |
董凤忠, 阚瑞峰, 刘文清, 等. 可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用 [J]. 量子电子学报, 2005, 22 | |
(3) | : 315-325. |
[7] | Stefani S, Piccioni G, Snels M, et al. Experimental CO2 absorption coefficients at high pressure and high temperature [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117: 21-28. | |
[8] | Tarsitano C G, Webster C R. Multilaser Herriott cell for planetary tunable laser spectrometers [J]. Applied Optics, 2007, 46(28): |
69 | 23-6935. |
[9] | Webster C R, Mahaffy P R. Determing the local abundance of Martian methane and its' 13C/12C and D/H isotopic ratios for |
comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission [J]. Planetary and Space | |
Science, 2011, 59(2-3): 271-283. | |
[10] | White J U. Long optical paths of large aperture [J]. Journal of the Optical Society of America, 1942, 32(5): 285-288. |
[11] | Chernin S M, Barskaya E G. Optical multipass matrix systems [J]. Applied Optics, 1991, 30(1): 51-58. |
[12] | Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers [J]. Applied Optics, 1964, 3(4): 523- |
526. | |
[13] | Chernin S M. New generation of multipass systems in high resolution spectroscopy [J]. Spectrochimica Acta Part A: Molecular |
and Biomolecular Spectroscopy, 1996, 52(8): 1009-1022. | |
[14] | Doussin J F, Dominique R, Patrick C. Multiple-pass cell for very-long-path infrared spectrometry [J]. Applied Optics, 1999, 38 |
(19) | : 4145-4150. |
[15] | Ahonen T, Alanko S, Horneman V M, et al. A long path cell for the Fourier spectrometer bruker IFS 120 HR: Application to |
the weak v1 + v2 and 3v2 bands of carbon disulfide [J]. Journal of Molecular Spectroscopy, 1997, 181(2): 279-286. | |
[16] | Song Z Q, Ni J S, Shang Y, et al. Study of long-optical-path White cell gas sensor with fiber coupling structure [J]. Journal of |
Optoelectronics Laser, 2012, 23(6): 1082-1085. | |
宋志强, 倪家升, 尚 盈, 等. 光纤耦合结构长光程怀特池气体传感器 [J]. 光电子·激光, 2012, 23(6): 1082-1085. | |
[17] | Glowacki D R, Goddard A, Seakins P W. Design and performance of a throughput-matched, zero-geometric-loss, modified |
three objective multipass matrix system for FTIR spectrometry [J]. Applied Optics, 2007, 46(32): 7872-7883. | |
[18] | Kwabia Tchana F, Willaert F, Landsheere X, et al. A new, low temperature long-pass cell for mid-infrared to terahertz |
spectroscopy and synchrotron radiation use [J]. Review of Scientific Instruments, 2013, 84(9): 093101. | |
[19] | Yang X B, Zhao W X, Tao L, et al. Measurement of volatile organic compounds in the smog chamber using a Chernin |
multipass cell [J]. Acta Physica Sinica, 2010, 59(7): 5154-5162. | |
杨西斌, 赵卫雄, 陶 玲, 等. 一种新型光学多通池系统应用于烟雾箱内挥发性有机化合物探测 [J]. 物理学报, 2010, 59(7): | |
51 | 54-5162. |
[20] | Cheng Y, Zhao W X, Hu C J, et al. Experimental study of the photochemical reaction in the smog chamber using a chernin |
multipass cell [J]. Acta Optica Sinica, 2013, 33(8): 295-302. | |
程 跃, 赵卫雄, 胡长进, 等. Chernin型多通池用于烟雾箱光化学反应过程的实验研究 [J]. 光学学报, 2013, 33(8): 295-302. | |
[21] | Fang B, Zhao W X, Yang N N, et al. Development and application of optical multi-pass cells [J]. Chinese Journal of Quantum |
Electronics, 2021, 38(5): 617-632. | |
方 波, 赵卫雄, 杨娜娜, 等. 光学多通池的研制及应用 [J]. 量子电子学报, 2021, 38(5): 617-632. | |
[22] | Herriott D R, Schulte H J. Folded optical delay lines [J]. Applied Optics, 1965, 4(8): 883-889. |
[23] | McManus J B, Kebabian P L, Zahniser M S. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy |
[J] | Applied Optics, 1995, 34(18): 3336-3348. |
[24] | Hao L Y, Qiang S, Wu G R, et al. Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy [J]. |
Review of Scientific Instruments, 2002, 73(5): 2079-2085. | |
[25] | Robert C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths [J]. Applied Optics, 2007, 46 |
(22) | : 5408-5418. |
[26] | So S, Thomazy D. Multipass cell using spherical mirrors while achieving dense spot patterns: US20120242989 [P]. 2012-09- |
27. | |
[27] | Liu K, Wang L, Tan T, et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a |
compact dense-pattern multipass cell [J]. Sensors and Actuators B: Chemical, 2015, 220: 1000-1005. | |
[28] | Cui R Y, Dong L, Wu H P, et al. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror |
aberration [J]. Optics Letters, 2019, 44(5): 1108-1111. | |
[29] | Ozharar S, Sennaroglu A. Mirrors with designed spherical aberration for multi-pass cavities [J]. Optics Letters, 2017, 42(10): |
19 | 35-1938. |
[30] | Dong M, Zheng C T, Yao D, et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSRHC) |
[J] | Optics Express, 2018, 26(9): 12081-12091. |
[31] | Manninen A, Tuzson B, Looser H, et al. Versatile multipass cell for laser spectroscopic trace gas analysis [J]. Applied Physics |
B, 2012, 109(3): 461-466. | |
[32] | Bernacki B E. Multipass optical device and process for gas and analyte determination: US7876443 [P]. 2011-01-25. |
[33] | Wu F L, Li C L, Shi W X, et al. Study on the spiral-torus herriott type cell [J]. Spectroscopy and Spectral Analysis, 2016, 36 |
(4) | : 1051-1055. |
吴飞龙, 李传亮, 史维新, 等. 一种螺旋型的紧凑多光程池 [J]. 光谱学与光谱分析, 2016, 36(4): 1051-1055. | |
[34] | Chang H, Feng S L, Qiu X B, et al. Implementation of the toroidal absorption cell with multi-layer patterns by a single ring |
surface [J]. Optics Letters, 2020, 45(21): 5897-5900. | |
[35] | Yang Z, Guo Y, Ming X S, et al. Generalized optical design of the double-row circular multi-pass cell [J]. Sensors (Basel, |
Switzerland), 2018, 18(8): 2680. | |
[36] | Smith L G. An infra-red absorption cell for gases at high and low temperatures [J]. Review of Scientific Instruments, 1942, 13 |
(2) | : 65-67. |
[37] | Robinson A M, Sutton N. Infrared absorption at 10.6 μm in CO2 at elevated temperatures [J]. Applied Optics, 1977, 16(10): |
26 | 32-2633. |
[38] | Robinson A M, Haswell P, Billing M. High-temperature, high-pressure 10-μm absorption cell [J]. Review of Scientific |
Instruments, 1983, 54(1): 117-118. | |
[39] | Hartmann J M, Perrin M Y. Measurements of pure CO2 absorption beyond the υ3 bandhead at high temperature [J]. Applied |
Optics, 1989, 28(13): 2550-2553. | |
[40] | Phillips W J, Welch J H, Brashear B J. A high-temperature infrared absorption gas sample cell [J]. Review of Scientific |
Instruments, 1992, 63(4): 2174-2176. | |
[41] | Rieker G B, Liu X, Li H, et al. Measurements of near-IR water vapor absorption at high pressure and temperature [J]. Applied |
Physics B, 2007, 87(1): 169-178. | |
[42] | Almodovar C A, Su W W, Strand C L, et al. High-pressure, high-temperature optical cell for mid-infrared spectroscopy [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 231(4): 69-78. | |
[43] | Gorbaty Y E, Bondarenko G V. High-pressure, high-temperature two-chamber cell with changeable path lengths for accurate |
measurements of absorption coefficient [J]. Review of Scientific Instruments, 1993, 64(8): 2346-2349. | |
[44] | Snels M, Stefani S, Boccaccini A, et al. A simulation chamber for absorption spectroscopy in planetary atmospheres [J]. |
Atmospheric Measurement Techniques, 2021, 14(11): 7187-7197. | |
[45] | Bartlome R, Baer M, Sigrist M W. High-temperature multipass cell for infrared spectroscopy of heated gases and vapors[J]. |
Review of Scientific Instruments, 2007, 78(1): 219-483. | |
[46] | Christiansen C, Stolberg-Rohr T, Fateev A, et al. High temperature and high pressure gas cell for quantitative spectroscopic |
measurements [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 169: 96-103. | |
[47] | Ghysels M, Vasilchenko S, Mondelain D, et al. Laser absorption spectroscopy of methane at 1000 K near 1.7 μm: A validation |
test of the spectroscopic databases [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 215: 59-70. | |
[48] | Schwarm K K, Dinh H Q, Goldenstein C S, et al. High-pressure and high-temperature gas cell for absorption spectroscopy |
studies at wavelengths up to 8 μm [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 227: 145-151. | |
[49] | Melin S T, Sanders S T. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference |
absorption spectrum of H2O vapor at 1723 K and 0.0235 bar [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 16, 180: 184-191. |
[50] | Cole R K, Draper A D, Schroeder P J, et al. Demonstration of a uniform, high-pressure, high-temperature gas cell with a dual |
frequency comb absorption spectrometer [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 268: 107640. | |
[51] | Stefani S, Piccioni G, Snels M, et al. Experimental CO2 absorption coefficients at high pressure and high temperature [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117: 21-28. | |
[52] | Tran H, Boulet C, Stefani S, et al. Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1. I― |
central and wing regions of the allowed vibrational bands [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 11, 112(6): 925-936. |
[53] | Stefani S, Snels M, Piccioni G, et al. Temperature dependence of collisional induced absorption (CIA) bands of CO2 with |
implications for Venus' atmosphere [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204: 242-249. | |
[54] | Sole M J, Walker P J. A windowless absorption cell for high temperature infrared applications [J]. Journal of Physics E: |
Scientific Instruments, 1970, 3(5): 394-396. | |
[55] | Grosch H, Fateev A, Nielsen K L, et al. Hot gas flow cell for optical measurements on reactive gases [J]. Journal of |
Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 392-399. | |
[56] | Fateev A, Clausen S. In situ gas temperature measurements by UV-absorption spectroscopy [J]. International Journal of |
Thermophysics, 2009, 30: 265-275 | |
[57] | Evseev V, Fateev A, Clausen S. High-resolution transmission measurements of CO2 at high temperatures for industrial |
applications [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(17): 2222-2233. | |
[58] | Willey D R, Crownover R L, Bittner D N, et al. Very low temperature spectroscopy: The pressure broadening coefficients for |
CO-He between 4.3 and 1.7 K [J]. Journal of Chemical Physics, 1988, 89(4): 1923-1928. | |
[59] | Gao W, Cao Z S, Yuan Y Q, et al. Design of a controllable low temperature cell and application [J]. Spectroscopy and Spectral |
Analysis, 2012, 32(3): 858-861. | |
高 伟, 曹振松, 袁怿谦, 等. 可连续控温低温吸收池的研制及其应用 [J]. 光谱学与光谱分析, 2012, 32(3): 858-861. | |
[60] | Smith M A H, Rinsland C P, Devi V M, et al. Temperature dependence of broadening and shifts of methane lines in the ν4 |
band [J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1992, 48(9): 1257-1272. | |
[61] | Willey D R, Choong V E, Goodelle J P, et al. Collisional cooling between 5 and 20 K: Low-temperature helium pressure |
broadening of CH3F [J]. Journal of Chemical Physics, 1992, 97(7): 4723-4726. | |
[62] | Sung K, Mantz A W, Smith M A H, et al. Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for |
13 | CH4 at 7 μm [J]. Journal of Molecular Spectroscopy, 2010, 262(2): 122-134. |
[63] | Ma H L, Sun M G, Cao Z S, et al. Cryogenic cell for low-temperature spectral experiments of atmospheric molecules [J]. |
Optics and Precision Engineering, 2014, 22(10): 2617-2621. | |
马宏亮, 孙明国, 曹振松, 等. 适用于大气分子低温光谱实验的低温吸收池 [J]. 光学精密工程, 2014, 22(10): 2617-2621. | |
[64] | Herzberg G. Spectroscopic evidence of molecular hydrogen in the atmospheres of Uranus and Neptune [J]. The Astrophysical |
Journal Letters, 1952, 115: 337-340. | |
[65] | Watanabe A, Welsh H L. Pressure-induced infrared absorption of gaseous hydrogen and deuterium at low temperatures: I. the |
integrated absorption coefficients [J]. Canadian Journal of Physics, 1965, 43(5): 818-828. | |
[66] | Blickensderfer R P, Ewing G E, Leonard R. A long path, low temperature cell [J]. Applied Optics, 1968, 7(11): 2214-2217. |
[67] | McKellar A W, Rich N, Soots V. An optical cell for long pathlengths at low temperatures [J]. Applied Optics, 1970, 9(1): 222- |
223. | |
[68] | Horn D, Pimentel G C. 2.5-km low-temperature multiple-reflection cell [J]. Applied Optics, 1971, 10(8): 1892-1898. |
[69] | Kim K C, Griggs E, Person W B. Kilometer-path low-temperature multiple-reflection cell for laser spectroscopy using tunable |
semiconductor diodes [J]. Applied Optics, 1978, 17(16): 2511-2515. | |
[70] | Briesmeister R A, Read G W, Kim K C, et al. Long path length temperature-controlled absorption cell for spectroscopic |
studies of radioactive compounds [J]. Applied Spectroscopy, 1984, 38(1): 35-38. | |
[71] | Ballard J, Strong K, Remedios J J, et al. A coolable long path absorption cell for laboratory spectroscopic studies of gases [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52(5): 677-691. | |
[72] | McKellar A R W, Watson J K G, Howard B J. The NO dimer: 15N isotopic infrared spectra, line-widths, and force field [J]. |
Molecular Physics, 1995, 86(2): 273-286. | |
[73] | Helou Z E, Erba B, Churassy S, et al. Design and performance of a low-temperature-multi-pass-cell for absorbance |
measurements of atmospheric gases. Application to ozone [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 06, 101(1): 119-128. |
[74] | Mondelain D, Camy-Peyre C, Mantz A W, et al. Performance of a Herriott cell, designed for variable temperatures between |
29 | 6 and 20 K [J]. Journal of Molecular Spectroscopy, 2007, 241(1): 18-25. |
[75] | Guinet M, Mantz A W, Mondelain D. Performance of a 12.49 meter folded path copper Herriott cell designed for temperatures |
between 296 and 20 K [J]. Applied Physics B, 2010, 100(2): 279-282. | |
[76] | Mantz A W, Sung K, Brown L R, et al. A cryogenic Herriott cell vacuum-coupled to a Bruker IFS-125HR [J]. Journal of |
Molecular Spectroscopy, 2014, 304: 12-24. |
[1] | 冯仕凌, 崔 琪, 郭心骞, 邱选兵, 郭古青, 和小虎, 李传亮∗. 小波降噪对TDLAS 干涉抑制的研究[J]. 大气与环境光学学报, 2022, 17(3): 328-335. |
[2] | 刘强强, 朱宏历, 郭古青, 王泽育, 冯仕凌, 邱选兵, 何秋生, 李传亮∗. 基于中红外量子级联激光器的SO2 和SO3 检测研究[J]. 大气与环境光学学报, 2021, 16(5): 424-431. |
[3] | 彭于权1,2,阚瑞峰1,许振宇1,夏晖晖1,聂伟1,2,张步强1,2, 裴晓凡1. 基于可调谐半导体激光吸收光谱技术的甲烷/空气预混平焰炉温度测量[J]. 大气与环境光学学报, 2019, 14(3): 228-234. |
[4] | 杨旭 刘霖 李金义 杜振辉 张哲远. 基于中红外DFB-ICL的氨气传感器设计[J]. 大气与环境光学学报, 2017, 12(6): 411-419. |
[5] | 王雪梅 刘石. 基于波长调制光谱技术的二氧化碳浓度测量[J]. 大气与环境光学学报, 2017, 12(5): 356-361. |
[6] | 信丰鑫 郭金家 孙加运 马玲 李杰 夏晖晖 刘继桥 刘智深. 基于可调谐半导体激光吸收光谱技术对开放式长光程大气CO2的测量[J]. 大气与环境光学学报, 2017, 12(4): 269-275. |
[7] | 袁松 阚瑞峰 姚路 陈玖英 李晗 许振宇. 基于可调谐半导体激光吸收光谱对CO2浓度的测量[J]. 大气与环境光学学报, 2012, (6): 432-437. |
[8] | 田明丽 涂郭结 王煜 庞涛 张志荣 吴边 夏滑 董凤忠. 用于工业气体在线测量的VCSEL恒流驱动电路设计[J]. 大气与环境光学学报, 2012, (4): 310-. |
[9] | 汤媛媛 刘文清 阚瑞峰 刘建国 许振宇 阮俊 姚路. 基于室温脉冲量子级联激光器的大气N2O监测仪研制[J]. 大气与环境光学学报, 2012, (3): 191-195. |
[10] | 高伟,陈卫东,张为俊,高晓明. 1.65mmCH4低温吸收光谱特性研究[J]. 大气与环境光学学报, 2012, 7(1): 13-17. |
[11] | 耿辉,张玉钧,刘文清,刘建国,阮俊,许振宇,姚路,阚瑞峰. 酒精蒸汽近红外高分辨光谱获取方法研究[J]. 大气与环境光学学报, 2012, 7(1): 57-62. |
[12] | 何莹 张玉钧 刘建国 宋雪梅 王立明 朱安宁. 农田开放环境下CO2浓度的激光在线监测[J]. 大气与环境光学学报, 2010, 5(6): 431-437. |
[13] | 何莹 张玉钧 刘建国 阚瑞峰. 奥运期间北京城区的开放式氨气激光在线监测[J]. 大气与环境光学学报, 2009, 4(5): 356-361. |
[14] | 张帅 刘文清 董凤忠 张志荣 . TDLAS氧气检测中谐波信号特性研究[J]. 大气与环境光学学报, 2009, 4(3): 217-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||