大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (1): 62-72.doi: 10.3969/j.issn.1673-6141.2024.01.005

• 环境光学监测技术 • 上一篇    下一篇

基于混核极限学习机的道路高排放源识别方法

段培杰 1,2, 李泽瑞 2*, 李鲲 3, 许镇义 2, 吕钊 4, 康宇 2,3   

  1. 1 安徽大学人工智能学院, 安徽 合肥 230601; 2 合肥综合性国家科学中心人工智能研究院, 安徽 合肥 230088; 3 中国科学技术大学先进技术研究院, 安徽 合肥 230088; 4 安徽大学计算机科学与技术学院, 安徽 合肥 230601
  • 收稿日期:2022-06-20 修回日期:2022-09-02 出版日期:2023-11-28 发布日期:2024-02-06
  • 通讯作者: E-mail: lizr@iai.ustc.edu.cn E-mail:lizr@iai.ustc.edu.cn
  • 作者简介:段培杰 (2000- ), 安徽阜阳人, 硕士研究生, 主要从事机器学习及其在大气环境监测等方面的应用研究。 E-mail: peijieduan@stu.ahu.edu.cn
  • 基金资助:
    国家自然科学基金 (62103125, 62033012), 安徽省博士后研究人员科研活动资助经费 (BSH202103)

On-road high-emitter identification method based on mixed kernel extreme learning machine

DUAN Peijie 1,2, LI Zerui 2*, LI Kun 3, XU Zhenyi 2, LYU Zhao 4, KANG Yu 2,3   

  1. 1 School of Artificial Intelligence, Anhui University, Hefei 230601, China; 2 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; 3 Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China; 4 School of Computer Science and Technology, Anhui University, Hefei 230601, China
  • Received:2022-06-20 Revised:2022-09-02 Online:2023-11-28 Published:2024-02-06
  • Contact: Li Zerui E-mail:lizr@iai.ustc.edu.cn

摘要: 由于道路高排放源所产生的污染气体对环境危害巨大, 因此实现对高排放源的准确识别具有重要意义。而 传统的基于限值划分的识别方法及新兴的人工智能识别方法在模型选择、评价指标、识别性能等方面都存在一定的改 进空间, 因此针对以上问题, 提出一种基于混核极限学习机的道路高排放源识别方法。该方法使用道路遥感监测设 备获取的移动源遥测数据, 在核极限学习机的基础上融合不同核函数, 可提升模型鲁棒性及道路高排放源识别性能。 针对合肥市蜀山区真实道路遥测数据上的分析结果表明, 该方法相比于其他方法具有较高的F1 分数以及较低的漏报 率、虚警率, 证实了该方法在高排放源识别中的有效性。因此, 该方法有助于对交通路网中高排放车辆进行高效识 别, 为进一步提升城市空气质量提供支撑。

关键词: 高排放识别, 混合核函数, 极限学习机, 道路遥感监测

Abstract: Since the pollution gases produced by on-road high-emitters are significantly harmful to the environment, it is of great significance to identify on-road high-emitters accurately. However, there is still a relatively large promotion space for identifying high-emitters in model selection, evaluation metrics, recognition performance, and other aspects, for both traditional cutpoint-based methods and emerging artificial intelligence-based methods. Therefore, to address the above issues, a method for on-road highemitters identification is proposed based on mixed kernel extreme learning machine. The method uses mobile source telemetry data obtained from on-road remote sensing detection equipment, and integrates different kernel functions on the basis of kernel extreme learning machine, which can improve the robustness of the model and the recognition performance of on-road high-emitters. The experimental results on remote sensing data collected from the traffic network in Shushan District of Hefei City, China, show that, compared with the other methods, the proposed method has a higher F1-Score, lower missing alarm rate and false alarm rate, which confirms the effectiveness of the method in high-emitter identification. It is indicated that the proposed method can help to identify high-emitters in the traffic road network efficiently and provide basic support for further improving urban air quality.

Key words: high-emitter identification, mixed kernel function, extreme learning machine, on-road remote sensing

中图分类号: