大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (1): 1-21.doi: 10.3969/j.issn.1673-6141.2024.01.001
• 综述 • 下一篇
顾文君 1,2, 袁野 1, 陈兰夏迪 3, 曹亚楠 1, 彭超 4,5*, 唐明金 3
收稿日期:
2023-09-13
修回日期:
2023-11-11
出版日期:
2023-11-28
发布日期:
2024-02-06
通讯作者:
E-mail: chao.peng1027@gmail.com
E-mail:mingjintang@gig.ac.cn
作者简介:
顾文君 (1996- ), 女, 安徽宿州人, 博士, 工程师, 主要从事大气颗粒物吸湿性研究。E-mail: gwj12271@163.com
基金资助:
GU Wenjun 1,2, YUAN Ye 1, CHEN Lanxiadi 3, CAO Yanan 1, PENG Chao 4,5*, TANG Mingjin 3
Received:
2023-09-13
Revised:
2023-11-11
Online:
2023-11-28
Published:
2024-02-06
Contact:
Mingjin TANG
E-mail:mingjintang@gig.ac.cn
摘要: 吸湿性是大气颗粒物最重要的物理化学性质之一, 直接影响着实际大气条件下气溶胶的粒径、形貌、成分、化 学反应活性和光学性质, 从而最终影响着气溶胶的环境与气候效应。现有的吸湿性测量技术大多需要假设颗粒物为 球形, 且灵敏度较低, 无法准确测定非球形颗粒物或吸湿性较低颗粒物的吸湿性。蒸汽吸附分析仪通过测量颗粒物 的质量随相对湿度的变化来研究其吸湿性, 这种新方法不仅对颗粒物的形貌没有要求, 而且具有卓越的灵敏度。本 文首先介绍了这种气溶胶吸湿性测量新方法的工作原理和技术特点, 然后重点介绍了这种新方法在大气科学、地球与 行星科学、医用气溶胶等多个领域中的应用。最后, 在简要总结蒸汽吸附分析仪在大气颗粒物吸湿性研究上的优越性 和局限性的基础上, 对未来可开展的吸湿性研究工作提出了一些设想。
中图分类号:
顾文君, 袁野, 陈兰夏迪, 曹亚楠, 彭超, 唐明金 . 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用[J]. 大气与环境光学学报, 2024, 19(1): 1-21.
GU Wenjun , YUAN Ye , CHEN Lanxiadi , CAO Yanan , PENG Chao , TANG Mingjin . Application of vapor sorption analyzer in aerosol hygroscopicity studies[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(1): 1-21.
[1] | Pöschl U. Atmospheric aerosols: Composition, transformation, climate and health effects [J]. Angewandte Chemie |
International Edition, 2005, 44(46): 7520-7540. | |
[2] | Tang M J, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud |
condensation, and ice nucleation [J]. Chemical Reviews, 2016, 116(7): 4205-4259. | |
[3] | Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle [J]. Science, 2001, 294(5549): 2119- |
2124. | |
[4] | Kaufman Y J, Tanré D, Boucher O. A satellite view of aerosols in the climate system [J]. Nature, 2002, 419(6903): 215-223. |
[5] | Zhou J C, Xu X Z, Zhao W X, et al. Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, |
scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer [J]. Atmospheric | |
Measurement Techniques, 2020, 13(5): 2623-2634. | |
[6] | Burgos M A, Andrews E, Titos G, et al. A global view on the effect of water uptake on aerosol particle light scattering [J]. |
Scientific Data, 2019, 6: 157. | |
[7] | Zhao C S, Yu Y L, Kuang Y, et al. Recent progress of aerosol light-scattering enhancement factor studies in China [J]. |
Advances in Atmospheric Sciences, 2019, 36(9): 1015-1026. | |
[8] | Titos G, Burgos M A, Zieger P, et al. A global study of hygroscopicity-driven light-scattering enhancement in the context of |
other in situ aerosol optical properties [J]. Atmospheric Chemistry and Physics, 2021, 21(17): 13031-13050. | |
[9] | Peng C, Chen L, Tang M J. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric |
relevance [J]. Fundamental Research, 2022, 2(4): 578-587. | |
[10] | Martin S T. Phase transitions of aqueous atmospheric particles [J]. Chemical Reviews, 2000, 100(9): 3403-3454. |
[11] | Liu Y J, Zhu T, Zhao D F, et al. Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 |
particles by micro-Raman spectrometry [J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7205-7215. | |
[12] | Tang M J, Chan C K, Li Y J, et al. A review of experimental techniques for aerosol hygroscopicity studies [J]. Atmospheric |
Chemistry and Physics, 2019, 19(19): 12631-12686. | |
[13] | Cheng Y F, Su H, Koop T, et al. Size dependence of phase transitions in aerosol nanoparticles [J]. Nature Communications, |
20 | 15, 6: 5923. |
[14] | Ma Q X, Liu Y C, He H. The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric |
relevant particles [J]. The Journal of Physical Chemistry A, 2010, 114(12): 4232-4237. | |
[15] | Gustafsson R J, Orlov A, Badger C L, et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral |
surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements [J]. Atmospheric Chemistry and | |
Physics, 2005, 5(12): 3415-3421. | |
[16] | Gu W J, Li Y J, Zhu J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using |
a commercial vapor sorption analyzer [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832. | |
[17] | Schuttlefield J D, Cox D, Grassian V H. An investigation of water uptake on clays minerals using ATR-FTIR spectroscopy |
coupled with quartz crystal microbalance measurements [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D21): | |
D21303. | |
[18] | Krueger B J, Ross J L, Grassian V H. Formation of microcrystals, micropuddles, and other spatial inhomogenieties in surface |
reactions under ambient conditions: An atomic force microscopy study of water and nitric acid adsorption on MgO(100) and | |
CaCO3(10 | |
- 14) | [ |
J] | Langmuir, 2005, 21(19): 8793-8801. |
[19] | Tong H J, Ouyang B, Nikolovski N, et al. A new electrodynamic balance (EDB) design for low-temperature studies: |
Application to immersion freezing of pollen extract bioaerosols [J]. Atmospheric Measurement Techniques, 2015, 8(3): 1183- | |
1195. | |
[20] | Hopkins R J, Mitchem L, Ward A D, et al. Control and characterisation of a single aerosol droplet in a single-beam gradientforce |
optical trap [J]. Physical Chemistry Chemical Physics, 2004, 6(21): 4924-4927. | |
[21] | Ettner M, Mitra S K, Borrmann S. Heterogeneous freezing of single sulfuric acid solution droplets: Laboratory experiments |
utilizing an acoustic levitator [J]. Atmospheric Chemistry and Physics, 2004, 4(7): 1925-1932. | |
[22] | Zhang S J, Xu L, Guo X M, et al. Influence of secondary organic coating on hygroscopicity of a sodium chloride core: Based |
on mircro-scale single particle analysis [J]. Environmental Science, 2020, 41(5): 2017-2025. | |
张淑佳, 徐 亮, 郭新梅, 等. 二次有机气溶胶壳对氯化钠核吸湿性的影响: 基于单颗粒微观尺度 [J]. 环境科学, 2020, 41 | |
(5) | : 2017-2025. |
[23] | Swietlicki E, Hansson H C, Hämeri K, et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured |
with H-TDMA instruments in various environments—A review [J]. Tellus B: Chemical and Physical Meteorology, 2008, 60(3): | |
43 | 2-469. |
[24] | Chen L, Peng C, Gu W J, et al. On mineral dust aerosol hygroscopicity [J]. Atmospheric Chemistry and Physics, 2020, 20(21): |
13 | 611-13626. |
[25] | Tang M J, Zhang H H, Gu W J, et al. Hygroscopic properties of saline mineral dust from different regions in China: |
Geographical variations, compositional dependence, and atmospheric implications [J]. Journal of Geophysical Research: | |
Atmospheres, 2019, 124(20): 10844-10857. | |
[26] | Peng C, Gu W J, Li R, et al. Large variations in hygroscopic properties of unconventional mineral dust [J]. ACS Earth and |
Space Chemistry, 2020, 4(10): 1823-1830. | |
[27] | Tang M J, Gu W J, Ma Q X, et al. Water adsorption and hygroscopic growth of six anemophilous pollen species: The effect of |
temperature [J]. Atmospheric Chemistry and Physics, 2019, 19(4): 2247-2258. | |
[28] | Chen L, Chen Y Z, Chen L L, et al. Hygroscopic properties of 11 pollen species in China [J]. ACS Earth and Space Chemistry, |
20 | 19, 3(12): 2678-2683. |
[29] | Peng C, Razafindrambinina P N, Malek K A, et al. Interactions of organosulfates with water vapor under sub- and |
supersaturated conditions [J]. Atmospheric Chemistry and Physics, 2021, 21(9): 7135-7148. | |
[30] | Sullivan R C, Moore M J K, Petters M D, et al. Effect of chemical mixing state on the hygroscopicity and cloud nucleation |
properties of calcium mineral dust particles [J]. Atmospheric Chemistry and Physics, 2009, 9(10): 3303-3316. | |
[31] | Good N, Coe H, McFiggans G. Instrumentational operation and analytical methodology for the reconciliation of aerosol water |
uptake under sub- and supersaturated conditions [J]. Atmospheric Measurement Techniques, 2010, 3(5): 1241-1254. | |
[32] | Tang M J, Whitehead J, Davidson N M, et al. Cloud condensation nucleation activities of calcium carbonate and its |
atmospheric ageing products [J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32194-32203. | |
[33] | Greenspan L. Humidity fixed points of binary saturated aqueous solutions [J]. Journal of Research of the National Bureau of |
Standards Section A: Physics and Chemistry, 1977, 81A(1): 89-96. | |
[34] | Huneeus N, Schulz M, Balkanski Y, et al. Global dust model intercomparison in AeroCom phase I [J]. Atmospheric Chemistry |
and Physics, 2011, 11(15): 7781-7816. | |
[35] | Ginoux P, Prospero J M, Gill T E, et al. Global-scale attribution of anthropogenic and natural dust sources and their emission |
rates based on MODIS Deep Blue aerosol products [J]. Reviews of Geophysics, 2012, 50(3): RG3005. | |
[36] | Textor C, Schulz M, Guibert S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom [J]. |
Atmospheric Chemistry and Physics, 2006, 6(7): 1777-1813. | |
[37] | Sokolik I N, Winker D M, Bergametti G, et al. Introduction to special section: Outstanding problems in quantifying the |
radiative impacts of mineral dust [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18015-18027. | |
[38] | Tegen I. Modeling the mineral dust aerosol cycle in the climate system [J]. Quaternary Science Reviews, 2003, 22(18/19): 1821- |
1834. | |
[39] | Bian H S, Zender C S. Mineral dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake |
[J] | Journal of Geophysical Research: Atmospheres, 2003, 108(D21): 4672. |
[40] | Liao H, Adams P J, Chung S H, et al. Interactions between tropospheric chemistry and aerosols in a unified general circulation |
model [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D1): 4001. | |
[41] | Bauer S E, Balkanski Y, Schulz M, et al. Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence |
on tropospheric ozone chemistry and comparison to observations [J]. Journal of Geophysical Research: Atmospheres, 2004, 109 | |
(D2) | : D02304. |
[42] | Bauer S E, Koch D. Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing |
in the Goddard Institute for Space Studies general circulation model [J]. Journal of Geophysical Research: Atmospheres, 2005, | |
11 | 0(D17): D17202. |
[43] | Knippertz P, Stuut J B W. Mineral Dust: A Key Player in the Earth System [M]. Dordrecht: Springer Netherlands, 2014. |
[44] | Abuduwaili J, Gabchenko M V, Xu J R. Eolian transport of salts—A case study in the area of Lake Ebinur (Xinjiang, |
Northwest China) [J]. Journal of Arid Environments, 2008, 72(10): 1843-1852. | |
[45] | Wang X M, Hua T, Zhang C X, et al. Aeolian salts in Gobi Deserts of the western region of Inner Mongolia: Gone with the |
dust aerosols [J]. Atmospheric Research, 2012, 118: 1-9. | |
[46] | Usher C R, Michel A E, Grassian V H. Reactions on mineral dust [J]. Chemical Reviews, 2003, 103(12): 4883-4940. |
[47] | Krueger B J, Grassian V H, Laskin A, et al. The transformation of solid atmospheric particles into liquid droplets through |
heterogeneous chemistry: Laboratory insights into the processing of calcium containing mineral dust aerosol in the troposphere | |
[J] | Geophysical Research Letters, 2003, 30(3): 1148. |
[48] | Zhao D F, Buchholz A, Mentel T F, et al. Novel method of generation of Ca(HCO3)2 and CaCO3 aerosols and first |
determination of hygroscopic and cloud condensation nuclei activation properties [J]. Atmospheric Chemistry and Physics, | |
20 | 10, 10(17): 8601-8616. |
[49] | Guo L Y, Gu W J, Peng C, et al. A comprehensive study of hygroscopic properties of calcium-and magnesium-containing |
salts: Implication for hygroscopicity of mineral dust and sea salt aerosols [J]. Atmospheric Chemistry and Physics, 2019, 19(4): | |
21 | 15-2133. |
[50] | Rubasinghege G, Grassian V H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces [J]. Chemical |
Communications, 2013, 49(30): 3071-3094. | |
[51] | Tang M J, Schuster G, Crowley J N. Heterogeneous reaction of N2O5 with illite and Arizona test dust particles [J]. Atmospheric |
Chemistry and Physics, 2014, 14(1): 245-254. | |
[52] | Tang M J, Huang X, Lu K D, et al. Heterogeneous reactions of mineral dust aerosol: Implications for tropospheric oxidation |
capacity [J]. Atmospheric Chemistry and Physics, 2017, 17(19): 11727-11777. | |
[53] | Wang T, Liu Y Y, Deng Y, et al. Adsorption of SO2 on mineral dust particles influenced by atmospheric moisture [J]. |
Atmospheric Environment, 2018, 191: 153-161. | |
[54] | Jia X H, Gu W J, Peng C, et al. Heterogeneous reaction of CaCO3 with NO2 at different relative humidities: Kinetics, |
mechanisms, and impacts on aerosol hygroscopicity [J]. Journal of Geophysical Research: Atmospheres, 2021, 126(11): | |
e2021JD034826. | |
[55] | Zhang R, Jing J, Tao J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective [J]. |
Atmospheric Chemistry and Physics, 2013, 13(14): 7053-7074. | |
[56] | Klimont Z, Kupiainen K, Heyes C, et al. Global anthropogenic emissions of particulate matter including black carbon [J]. |
Atmospheric Chemistry and Physics, 2017, 17(14): 8681-8723. | |
[57] | Zheng B, Tong D, Li M, et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions |
[J] | Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111. |
[58] | Chen S Y, Zhang X R, Lin J T, et al. Fugitive road dust PM2.5 emissions and their potential health impacts [J]. Environmental |
Science & Technology, 2019, 53(14): 8455-8465. | |
[59] | Ojha K, Pradhan N C, Samanta A N. Zeolite from fly ash: Synthesis and characterization [J]. Bulletin of Materials Science, |
20 | 04, 27(6): 555-564. |
[60] | Philip S, Martin R V, Snider G, et al. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented |
fine particulate matter source in global atmospheric models [J]. Environmental Research Letters, 2017, 12(4): 044018. | |
[61] | Umo N S, Wagner R, Ullrich R, et al. Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled |
pores [J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8783-8800. | |
[62] | Li W J, Xu L, Liu X H, et al. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems [J]. |
Science Advances, 2017, 3(3): e1601749. | |
[63] | Kanakidou M, Myriokefalitakis S, Tsigaridis K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients [J]. |
Environmental Research Letters, 2018, 13(6): 063004. | |
[64] | Kim D, Xiao Y, Karchere-Sun R, et al. Atmospheric processing of anthropogenic combustion particles: Effects of acid media |
and solar flux on the iron mobility from fly ash [J]. ACS Earth and Space Chemistry, 2020, 4(5): 750-761. | |
[65] | Borcherding J A, Chen H H, Caraballo J C, et al. Coal fly ash impairs airway antimicrobial peptides and increases bacterial |
growth [J]. PLoS One, 2013, 8(2): e57673. | |
[66] | Navea J G, Richmond E, Stortini T, et al. Water adsorption isotherms on fly ash from several sources [J]. Langmuir, 2017, 33 |
(39) | : 10161-10171. |
[67] | Georgakopoulos D G, Després V, Fröhlich-Nowoisky J, et al. Microbiology and atmospheric processes: Biological, physical |
and chemical characterization of aerosol particles [J]. Biogeosciences, 2009, 6(4): 721-737. | |
[68] | Morris C E, Sands D C, Bardin M, et al. Microbiology and atmospheric processes: Research challenges concerning the impact |
of airborne micro-organisms on the atmosphere and climate [J]. Biogeosciences, 2011, 8(1): 17-25. | |
[69] | Zheng Y H, Li J, Chen H X, et al. Bioaerosol research: Yesterday, today and tomorrow [J]. Chinese Science Bulletin, 2018, 63 |
(10) | : 878-894. |
郑云昊, 李 菁, 陈灏轩, 等. 生物气溶胶的昨天、今天和明天 [J]. 科学通报, 2018, 63(10): 878-894. | |
[70] | Després V R, Alex Huffman J, Burrows S M, et al. Primary biological aerosol particles in the atmosphere: A review [J]. Tellus |
B: Chemical and Physical Meteorology, 2012, 64(1): 15598. | |
[71] | Sofiev M, Siljamo P, Ranta H, et al. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical |
considerations and a feasibility study [J]. International Journal of Biometeorology, 2006, 50(6): 392-402. | |
[72] | D'Amato G, Spieksma F T M, Liccardi G, et al. Pollen-related allergy in Europe [J]. Allergy, 1998, 53(6): 567-578. |
[73] | Pummer B G, Bauer H, Bernardi J, et al. Chemistry and morphology of dried-up pollen suspension residues [J]. Journal of |
Raman Spectroscopy, 2013, 44(12): 1654-1658. | |
[74] | Diehl K, Quick C, Matthias-Maser S, et al. The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and |
condensation freezing modes [J]. Atmospheric Research, 2001, 58(2): 75-87. | |
[75] | Pope F D. Pollen grains are efficient cloud condensation nuclei [J]. Environmental Research Letters, 2010, 5(4): 044015. |
[76] | Fang Y M, Ma C M, Bunting M J, et al. Airborne pollen concentration in Nanjing, Eastern China, and its relationship with |
meteorological factors [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(19): 10842-10856. | |
[77] | Rahman A, Luo C X, Khan M H R, et al. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors |
on the concentration of airborne pollen in Guangzhou, China [J]. Atmospheric Environment, 2019, 212: 290-304. | |
[78] | Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: Current |
and emerging issues [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5155-5236. | |
[79] | Jimenez J L, Canagaratna M R, Donahue N M, et al. Evolution of organic aerosols in the atmosphere [J]. Science, 2009, 326 |
(5959): 1525-1529. | |
[80] | Surratt J D, Gómez-González Y, Chan A W H, et al. Organosulfate formation in biogenic secondary organic aerosol [J]. The |
Journal of Physical Chemistry A, 2008, 112(36): 8345-8378. | |
[81] | Tolocka M P, Turpin B. Contribution of organosulfur compounds to organic aerosol mass [J]. Environmental Science & |
Technology, 2012, 46(15): 7978-7983. | |
[82] | Hansen A M K, Hong J, Raatikainen T, et al. Hygroscopic properties and cloud condensation nuclei activation of limonenederived |
organosulfates and their mixtures with ammonium sulfate [J]. Atmospheric Chemistry and Physics, 2015, 15(24): | |
14 | 071-14089. |
[83] | Estillore A D, Hettiyadura A P S, Qin Z, et al. Water uptake and hygroscopic growth of organosulfate aerosol [J]. |
Environmental Science & Technology, 2016, 50(8): 4259-4268. | |
[84] | Catling D C, Claire M W, Zahnle K J, et al. Atmospheric origins of perchlorate on Mars and in the Atacama [J]. Journal of |
Geophysical Research: Planets, 2010, 115(E1): E00E11. | |
[85] | Kounaves S P, Stroble S T, Anderson R M, et al. Discovery of natural perchlorate in the Antarctic Dry Valleys and its global |
implications [J]. Environmental Science & Technology, 2010, 44(7): 2360-2364. | |
[86] | Gough R V, Chevrier V F, Baustian K J, et al. Laboratory studies of perchlorate phase transitions: Support for metastable |
aqueous perchlorate solutions on Mars [J]. Earth and Planetary Science Letters, 2011, 312(3/4): 371-377. | |
[87] | Martín-Torres F J, Zorzano M P, Valentín-Serrano P, et al. Transient liquid water and water activity at Gale crater on Mars [J]. |
Nature Geoscience, 2015, 8(5): 357-361. | |
[88] | Nuding D L, Davis R D, Gough R V, et al. The aqueous stability of a Mars salt analog: Instant Mars [J]. Journal of |
Geophysical Research: Planets, 2015, 120(3): 588-598. | |
[89] | Smith P H, Tamppari L K, Arvidson R E, et al. H2O at the Phoenix landing site [J]. Science, 2009, 325(5936): 58-61. |
[90] | Martínez G M, Newman C N, De Vicente-Retortillo A, et al. The modern near-surface Martian climate: A review of in-situ |
meteorological data from Viking to Curiosity [J]. Space Science Reviews, 2017, 212(1): 295-338. | |
[91] | Jia X H, Gu W J, Li Y J, et al. Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4·H2O: Implications |
for the stability of aqueous water in hyperarid environments on Mars and on Earth [J]. ACS Earth and Space Chemistry, 2018, | |
2( | 2): 159-167. |
[92] | Gu W J, Li Y J, Tang M J, et al. Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid |
water in some hyperarid environments [J]. RSC Advances, 2017, 7(74): 46866-46873. | |
[93] | Davidson N, Tong H J, Kalberer M, et al. Measurement of the Raman spectra and hygroscopicity of four pharmaceutical |
aerosols as they travel from pressurised metered dose inhalers (pMDI) to a model lung [J]. International Journal of | |
Pharmaceutics, 2017, 520(1/2): 59-69. | |
[94] | Kleinstreuer; C, Zhang; Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways [J]. Respiratory |
Physiology & Neurobiology, 2008, 163(1-3): 128-138. | |
[95] | Malvè M, Sánchez-Matás C, López-Villalobos J L. Modelling particle transport and deposition in the human healthy and |
stented tracheobronchial airways [J]. Annals of Biomedical Engineering, 2020, 48(6): 1805-1820. | |
[96] | Tong H J, Fitzgerald C, Gallimore P J, et al. Rapid interrogation of the physical and chemical characteristics of salbutamol |
sulphate aerosol from a pressurised metered-dose inhaler (pMDI) [J]. Chemical Communications, 2014, 50(98): 15499-15502. | |
[97] | Broday D M, Georgopoulos P G. Growth and deposition of hygroscopic particulate matter in the human lungs [J]. Aerosol |
Science and Technology, 2001, 34(1): 144-159. | |
[98] | Hiller F C, Mazumder M K, Wilson J D, et al. Aerodynamic size distribution, hygroscopicity and deposition estimation of |
beclomethasone dipropionate aerosol [J]. Journal of Pharmacy and Pharmacology, 2011, 32(1): 605-609. | |
[99] | Umetsu D T, McIntire J J, Akbari O, et al. Asthma: An epidemic of dysregulated immunity [J]. Nature Immunology, 2002, 3 |
(8) | : 715-720. |
[100] | Dickstein B. Enzyme lysis of asthmatic sputum. A review and progress report [J]. Annals of Allergy, 1959, 17: 784-801. |
[101] | Simon S W, Harmon G A. Comparison of various expectorant drugs employing a new method for determining sputum |
viscosity [J]. Journal of Allergy, 1961, 32(6): 493-500. | |
[102] | Labiris N R, Dolovich M B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of |
aerosolized medications [J]. British Journal of Clinical Pharmacology, 2003, 56(6): 588-599. | |
[103] | Shubin H, Sherson J S, Weissman D. Trypsin therapy in pulmonary diseases, 1955-1960 [J]. Diseases of the Chest, 1961, 40 |
(2) | : 148-153. |
[104] | Mather G K, Terblanche D E, Steffens F E, et al. Results of the South African cloud-seeding experiments using hygroscopic |
flares [J]. Journal of Applied Meteorology, 1997, 36(11): 1433-1447. | |
[105] | Silverman B A. A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement [J]. Bulletin of the |
American Meteorological Society, 2003, 84(9): 1219-1230. | |
[106] | An H, Chen Y, Wang Y, et al. High-performance solar-driven water harvesting from air with a cheap and scalable hygroscopic |
salt modified metal-organic framework [J]. Chemical Engineering Journal, 2023, 461: 141955. | |
[107] | Lu K J, Liu C J, Liu J, et al. Hierarchical natural pollen cell-derived composite sorbents for efficient atmospheric water |
harvesting [J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33032-33040. | |
[108] | Nandakumar D K, Zhang Y X, Ravi S K, et al. Solar energy triggered clean water harvesting from humid air existing above |
sea surface enabled by a hydrogel with ultrahigh hygroscopicity [J]. Advanced Materials, 2019, 31(10): e1806730. | |
[109] | Talukdar P, Olutmayin S O, Osanyintola A F, et al. An experimental data set for benchmarking 1-D, transient heat and |
moisture transfer models of hygroscopic building materials. Part I: Experimental facility and material property data [J]. | |
International Journal of Heat and Mass Transfer, 2007, 50(23, 24): 4527-4539. | |
[110] | Gómez-Arriaran I, Sellens-Fernández I, Odriozola-Maritorena M, et al. A PC-tool to calculate the moisture buffer value [J]. |
Energy Procedia, 2017, 133: 68-75. | |
[111] | Sagar V R, Kumar P S. Recent advances in drying and dehydration of fruits and vegetables: A review [J]. Journal of Food |
Science and Technology, 2010, 47(1): 15-26. | |
[112] | Wu J X, Zhang L, Fan K. Recent advances in ultrasound-coupled drying for improving the quality of fruits and vegetables: A |
review [J]. International Journal of Food Science & Technology, 2022, 57(9): 5722-5731. | |
[113] | Chen S G, Zhang S B, Galluzzi M, et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly |
strategy [J]. Chemical Engineering Journal, 2019, 358: 634-642. | |
[114] | Wang Y F, Xia G, Yu H, et al. Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial |
inhibition on PET fabric [J]. Advanced Materials, 2021, 33(35): e2100140. | |
[115] | Sun J X, Liu L, Xu L, et al. Key role of nitrate in phase transitions of urban particles: Implications of important reactive |
surfaces for secondary aerosol formation [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 1234-1243. |
[1] | 周家成, 徐学哲, 方 波, 张 杨, 赵卫雄∗, 张为俊, . 气溶胶光学吸湿增长特性测量方法研究进展[J]. 大气与环境光学学报, 2022, 17(1): 92-103. |
[2] | 仝玉恺, 方 藤, 柳瑶瑶, 赵东平, 叶安培∗. 单颗粒气溶胶液滴吸湿挥发特性研究 #br# [J]. 大气与环境光学学报, 2020, 15(6): 486-495. |
[3] | 郑晓宏 胡长进 潘刚 程跃 刘志 赵卫雄 顾学军 张为俊. 苯乙烯-臭氧反应产生的二次有机气溶胶的吸湿性研究[J]. 大气与环境光学学报, 2012, (4): 254-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||