大气与环境光学学报 ›› 2024, Vol. ›› Issue (2): 175-184.doi: 10.3969/j.issn.1673-6141.2024.02.004

• 环境光学监测技术 • 上一篇    

基于光通量计量法的紫外辐射测定方法建立及其应用研究

杨栋森 1#, 李婉赢 2#, 陈江耀 2*, 刘新然 1, 郑军 1   

  1. 1 南京信息工程大学环境科学与工程学院, 江苏 南京 210044; 2 广东工业大学环境健康与污染控制研究院和环境科学与工程学院, 广东 广州 510006
  • 收稿日期:2022-09-26 修回日期:2022-11-06 出版日期:2024-03-28 发布日期:2024-04-18
  • 通讯作者: E-mail: chenjiangyao@gdut.edu.cn E-mail:chenjiangyao@gdut.edu.com
  • 作者简介:杨栋森 (1993- ), 江苏南通人, 博士研究生, 主要从事新粒子生成观测方面的研究。E-mail: yangdongsen93@163.com 李婉赢 (1994- ), 女, 辽宁沈阳人, 博士研究生, 主要从事大气氧化机制方面的研究。E-mail: liwanying0203@163.com
  • 基金资助:
    国家自然科学基金 (41730106, 41975172)

Establishment of ozone- and nitrous oxide-based actinometry for quantifying vacuum ultra-violate radiation intensities and its application

YANG Dongsen 1#, LI Wanying 2#, CHEN Jiangyao 2*, LIU Xinran 1, ZHENG Jun 1   

  1. 1 School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-09-26 Revised:2022-11-06 Online:2024-03-28 Published:2024-04-18
  • Contact: Jiangyao Chen E-mail:chenjiangyao@gdut.edu.com

摘要: 近年来, 我国大气一次污染颗粒物的浓度逐渐下降, 二次生成的气溶胶已经成为了大气颗粒物的主要组成部 分。新粒子生成作为二次生成气溶胶的重要来源, 本世纪以来受到的关注也越来越高。而气态硫酸作为新粒子生成 化学过程中一种极为重要的前体物, 由于其浓度极低, 检测所需的仪器灵敏度极高, 因此如何准确定量气态硫酸是新 粒子形成机制研究中最大的难点。现有的气态硫酸的定量方法主要是基于光化学法, 利用紫外辐射光解水汽产生OH 自由基后与过量的二氧化硫反应最终生成气态硫酸, 气态硫酸的浓度由紫外光强与水汽浓度共同决定。其中紫外光 强的直接测量存在着较大的不确定性, 这主要是由于光强在气态硫酸标定装置的反应腔体中分布不均匀, 此外, 在实 际大气条件下标定时还会受到背景气溶胶的散射、吸收作用的影响。因此, 此研究建立并比较了两种分别基于臭氧和 氧化亚氮光通量计量法的紫外辐射测定的间接测量方法。结果表明: 基于臭氧的间接测量法的主要误差来自于氧气 的吸收截面, 理论误差 > 60%,实际实验室的重复实验误差约为12%; 基于氧化亚氮的间接测量法的主要误差来自于 二级反应速率kn的测量误差、反应产物检测仪器及流量控制装置的不确定性, 理论误差 < 16%,实际实验室的重复实 验误差 < 1%。将基于氧化亚氮的间接测量法应用于外场观测的气态硫酸检测时, 在为期半个月每天一次的定标气态 硫酸中, 气态硫酸的测量误差约为24%, 接近或优于国外观测结果, 证明基于氧化亚氮的光通量计量法对于紫外辐射 的测定方法具有较好的准确性和稳定度, 可以有效应用于气态硫酸的定量测量。

关键词: 紫外辐射, 光通量计量法, 气态硫酸

Abstract: The primary particle concentration in China keeps continuously decreasing in recent years, thus, the secondary generated aerosols have become the main component of atmospheric particulate matter. As an important source of secondary aerosols, new particle formation has received increasing attention since the beginning of this century. In the chemical process of new particle formation, gaseous sulfuric acid is an extremely important gas precursor. Due to its extremely low concentration and extremely high instrument sensitivity required for detection, the accurate quantification of gaseous sulfuric acid is always the biggest difficulty in the study of new particle formation chemical process. The existing quantification method for gaseous sulfuric acid is mainly based on photochemistry methods, which uses ultra-violet radiation to photolyze water vapor to generate OH radicals and then react with excess sulfur dioxide to finally generate gaseous sulfuric acid. So, the concentration of gaseous sulfuric acid is determined by the intensity of ultraviolet light and the concentration of water vapor, in which the mainly uncertainty is the intensity of ultraviolet light due to its direct measurement highly affected by the uneven distribution of light intensity inside the reaction chamber of the calibration instrument. Besides, the scattering and absorption of background aerosols during the filed measurement can also amplify the uncertainty of the direct measurement of ultraviolet light. Therefore, this study establishes and compares two indirect measurement methods for ultraviolet radiation determination based on ozone and nitrous oxide actinometry, respectively. The results show that the main error of the ozone-based indirect measurement method comes from the absorption cross section of oxygen, with a theoretical error of > 60% and a repeated laboratory experiment error is around 12%. While the main errors of the nitrous oxide-based indirect measurement method come from the secondorder rate constant kn, the uncertainties of the measurement instruments for nitrogen oxide and the mass flow controllers, with a theoretical error of < 16% and a repeated laboratory experiment error of < 1%. During the field measurement of gaseous sulfuric acid, for the indirect measurement method based on nitrous oxide, the measurement error of gaseous sulfuric acid is around 24% under the condition of calibration carried out once a day for half a month, which is close to or better than that of foreign observation results. This indicated that the nitrous oxide-based actinometry method in the quantification of ultra-violet radiation intensities has quite good accuracy and stability, and can be effectively applied to the quantitative measurement of gaseous sulfuric acid.

Key words: ultra-violet radiation, actinometry, gaseous sulfuric acid

中图分类号: