大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (5): 503-518.
• 综述 • 下一篇
裴祥宇 1, 徐正宁 1, 王志彬 1,2*
收稿日期:
2022-10-13
修回日期:
2022-12-13
出版日期:
2024-09-28
发布日期:
2024-10-11
通讯作者:
E-mail: wangzhibin@zju.edu.cn
E-mail:wangzhibin@zju.edu.cn
作者简介:
裴祥宇 (1988- ), 内蒙古包头人, 博士, 助理研究员, 主要从事环境光学与技术方面的研究。E-mail: xiangyupei@zju.edu.cn
基金资助:
PEI Xiangyu 1, XU Zhengning 1, WANG Zhibin 1,2*
Received:
2022-10-13
Revised:
2022-12-13
Online:
2024-09-28
Published:
2024-10-11
Contact:
Zhibin Wang
E-mail:wangzhibin@zju.edu.cn
摘要: 挥发性有机物 (VOCs) 是导致城市二次有机气溶胶 (SOA) 和臭氧 (O3) 污染的重要前体物。工业园区是人为 源VOCs的重要排放源, 主要体现在以无组织形式排放的烷烃、烯烃、芳香烃等特征污染物。为有效控制工业园区的 VOCs排放及评估管控与治理效果, 对VOCs排放通量及分布进行监测具有决定性的意义。红外掩日通量 (SOF) 技术 是当前场地VOCs无组织排放通量监测的最佳实用技术之一。本文详细介绍了SOF技术的原理、方法、发展历程与实 际应用案例, 并展望了SOF技术在我国工业园区VOCs排放通量监测的应用前景。
中图分类号:
裴祥宇, 徐正宁, 王志彬, . 基于红外掩日通量遥感监测的挥发性有机物通量反演技术及其应用研究进展[J]. 大气与环境光学学报, 2024, 19(5): 503-518.
PEI Xiangyu , XU Zhengning , WANG Zhibin , . Research progress in volatile organic compounds flux retrieval based on solar occultation flux remote sensing and its application[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(5): 503-518.
[1] Hallquist M, Munthe J, Hu M, et al.Photochemical smog in China: scientific challenges and implications for air-quality policies [J]. National Science Review, 2016, 3:401-403. [2]Gao F.Analysis of VOCs emission sources and control technology in petrochemical industry [J]. Environment and Development, 2020, 32, 64-65. [3]高菲.石化行业VOCs排放源项及管控技术探析 [J]. 环境与发展, 2020, 32, 64-65. [4] Li L B, Cheng M T, Li L, et al.Current and future developments in fugitive volatile organic compounds emission flux monitoring in petroleum refining industry [J]. Environmental Monitoring in China, 2020, 36, 19-28. [5]李凌波, 程梦婷, 李龙, 等.炼油企业挥发性有机物无组织排放通量监测现状与发展[J]. 中国环境监测, 2020, 36, 19-28. [6]Li L B, Liu Z S, Fang X C.The strategies for refinery VOC emission control —— storage tanks and transfer operations, wastewater treatment, process vents, cooling towers and flares [J]. Petroleum & Petrochemical Today, 2013, 21, 4-12. [7]李凌波, 刘忠生, 方向晨.炼油厂VOC排放控制策略——储运、废水处理、工艺尾气、冷却塔及火炬 [J]. 当代石油石化, 2013, 21, 4-12. [8]Zhu G Q.Application of VOC online monitoring system in environmental monitoring of chemical industry park [J]. Value Engineering, 2020, 39, 245-247. [9]朱广钦.化工业园区环境监测中VOC在线监测系统的应用 [J]. 价值工程, 2020, 39, 245-247. [10]Su A H.Application of air VOC on - line monitoring system in chemical industrial park [J]. Environmental Science and Management, 2018, 43, 93-97. [11]苏爱华.环境空气VOC在线监测系统在化工业园区环境监测中的应用研究 [J]. 环境科学与管理, 2018, 43, 93-97. [12]Cheng M T, Li L B, Han C B, et al.Monitoring of VOCs emissions from petroleum refining and petrochemical industry by Solar Occultation Flux [J]. Contemporary Chemical Industry, 2017, 46, 1719-1722+1729. [13]程梦婷, 李凌波, 韩丛碧, 等.红外掩日通量遥感监测技术在石化VOCs排放监测中的应用 [J]. 当代化工, 2017, 46, 1719-1722+1729. [14]Ismail S, Browell E.Encyclopedia of Atmospheric Sciences (Second Edition) [M]. Waltham, MA: Academic Press, 2015. 277-288. [15]Mellqvist J, Samuelsson J, Johansson J, et al.Measurements of industrial emissions of alkenes in Texas using the solar occultation flux method [J]. Journal of Geophysical Research-Atmos., 2010, 115, D00F17. [16]Li, J, Yu, Z, Du, Z, et al.Standoff chemical detection using laser absorption spectroscopy: A review [J]. Remote Sensing, 2020, 12, 2771. [17]Brinkmann T, Santonja G, Yükseler H, et al.Best Available Techniques (BAT) reference document for common waste water and waste gas treatment/management systems in the chemical sector [R]. Seville, Spain: Publications Office of the European Union, 2016. [18]Mellqvist J, Samuelsson J, Offerle B, et al.Pilot study to quantify industrial emissions of VOCs, NO2 and SO2 by SOF and mobile DOAS in the Carson Area [R]. Gothenburg, Sweden: FluxSense AB, 2014. [19]Mellqvist J, Samuelsson J, Andersson P, et al.Using Solar Occultation Flux and other optical remote sensing methods to measure VOC emissions from a variety of stationary sources in the South Coast Air Basin [R]. Gothenburg, Sweden: FluxSense AB, 2017. [20]Johansson J, Mellqvist J, Andersson P, et al.Analysis of VOC, NO2, SO2 and HCHO data from SOF, mobile DOAS and MW-DOAS during DISCOVER-AQ [R]. Austin, Texas: Texas Air Quality Research Program, University of Texas at Austin, 2015. [21]Yarwood G, Samuelsson J, Johansson J, et al.Controlled ethylene release study to evaluate the SOF method [R]. Longview, Texas: Ramboll Environ, FluxSense AB, University of Houston, 2015. [22]刘文清, 刘建国, 谢品华, 等.区域空气污染输送通量观测的光学遥感应用方法和技术规范研究 [J]. 科技成果管理与研究, 2015, 12, 88-89. [23] Liu W Q.Spectroscopic remote sensing technology and application for regional air pollution [M]. Beijing: Chemical Industry Press, 2020. [24]刘文清.区域空气光学遥感观测技术及应用 [M]. 北京:化学工业出版社, 2020. [25]Galle B, Mellqvist J, Method for measuring of gaseous emissions and/or flux.United States patent 20040012781 [P], 2004-01-22. [26]Mellqvist J, Samuelsson J, Galle B, et al.The Solar Occultation Flux method, a new technique to quantify fugitive VOC emissions [A]. Proceedings of the 7th International Conference on Emission Monitoring [C]. Paris, France, 2006. [27]Johansson J, Mellqvist J, Samuelsson J, et al.Quantitative measurements and modeling of industrial formaldehyde emissions in the Greater Houston area during campaigns in 2009 and 2011 [J]. Journal of Geophysical Research-Atmos., 2014, 119, 4303-4322. [28]Merlaud A, De Mazière M, Hermans C, et al.Equations for solar tracking [J]. Sensors, 2012, 12, 4074-4090. [29]Johansson J, Optical remote sensing of industrial gas emission fluxes [D].Gothenburg, Sweden: Chalmers University of Technology, 2016. [30]Han X, Li X, Gao M, et al.Emissions of airport monitoring with Solar Occultation Flux-Fourier Transform Infrared Spectrometer [J]. Journal of Spectroscopy, 2018, 2018, 1069612. [31]Kihlman M.Application of solar FTIR spectroscoy for quantingfying gas emissions [D]. Gothenburg: Chalmers University of Technology, 2005. [32]Wang F, Liu J G, Gao M G, et al.Design of sun tracking system for FTIR monitoring of atmospheric composition [J]. Journal of Applied Optics, 2019, 30, 792-796. [33]汪芳, 刘建国, 高闽光, 等.用于FTIR大气成分监测的太阳跟踪系统设计 [J]. 应用光学, 2019, 30, 792-796. [34]Jin L, Gao M G, Lu Y H, et al.Design of sun-tracker and its application in environmental monitoring [J]. Transducer and Microsystem Technologies, 2011, 30, 141-144. [35]金岭, 高闽光, 陆亦怀, 等.太阳跟踪器的设计及其在环境监测中的应用 [J]. 传感器与微系统, 2011, 30, 141-144. [36]Jin L, Gao M G, Lu Y H, et al.Design of spectra filter software based on LabVIEW [A]. Proceedings of 2010 International Conference on Remote Sensing (ICRS) [C]. Hangzhou, China, 2010. [37]金岭, 高闽光, 陆亦怀, 等.基于LabVIEW实现的光谱筛选软件设计 [A]. Proceedings of 2010 International Conference on Remote Sensing (ICRS) [C]. 中国浙江杭州. 2010. [38]Hu K.Optical design of ground based solar spectroscopy remote sensing system [D]. Hefei: University of Science and Technology of China, 2020. [39]胡凯.太阳光谱地基遥测系统的光学[D]. 合肥: 中国科学技术大学, 2020. [40]Qu L, Liu J, Deng Y, et al.Analysis and adjustment of positioning error of PSD system for mobile SOF-FTIR [J]. Sensors, 2019, 19, 5081. [41]Gisi M., Hase F, Dohe S, et al. XCO2-measurements with a tabletop FTS using solar absorption spectroscopy [J]. Atmos. Meas. Tech., 2012, 5, 2969-2980. [42]Luther A, Kleinschek R, Scheidweiler L, et al.Quantifying CH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry [J]. Atmos. Meas. Tech., 2019, 12, 5217-5230. [43]Gisi M, Hase F, Dohe S, et al.Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers [J]. Atmos. Meas. Tech., 2011, 4, 47-54. [44]Klappenbach F, Bertleff M, Kostinek, J, et al.Accurate mobile remote sensing of XCO2 and XCH4 latitudinal transects from aboard a research vessel [J]. Atmos. Meas. Tech., 2015, 8, 5023-5038. [45]Butz A, Dinger A, Bobrowski N, et al.Remote sensing of volcanic CO2, HF, HCl, SO2, and BrO in the downwind plume of Mt. Etna [J]. Atmos. Meas. Tech., 2017, 10, 1-14. [46]Baidar S, Kille N, Ortega I, et al.Development of a digital mobile solar tracker [J]. Atmos. Meas. Tech., 2016, 9, 963-972. [47]Wang Z B, Pei X Y, Xu Z N, et al.Automatic solar tracker and method of automatic solar tracking based on imaging feedback technique. China patent 113342064 [P], 2022-07-19. [48]王志彬, 裴祥宇, 徐正宁, 等.基于成像反馈技术的自动太阳跟踪器及自动太阳跟踪方法. 中国专利CN 113342064 [P], 2022-07-19. [49]Johansson J, Mellqvist J, Samuelsson J, et al.Emission measurements of alkenes, alkanes, SO2, and NO2 from stationary sources in Southeast Texas over a 5?year period using SOF and mobile DOAS [J]. Journal of Geophysical Research-Atmos., 2014, 119, 1973-1991. [50]Feng S X, Xu L, Gao M G, et al.Application of Fourier Transform Infrared Spectroscopy based on sun spectrum to monitor the distribution of propylene from petrochemical industry [J]. Infrared Technology, 2012, 34, 168-172. [51]冯书香, 徐亮, 高闽光, 等.基于太阳光谱的FTIR技术监测石油化工区丙烯的浓度分布[J]. 红外技术, 2012, 34, 168-172. [52]Jin L, Xu L, Gao M G, et al.Monitoring chemical plants’ VOCs emissions based on SOF-FTIR technology [J]. Journal of Atmospheric and Enviromental Optics, 2013, 8, 416-421. [53]金岭, 徐亮, 高闽光, 等.利用SOF-FTIR技术监测化工厂区VOCs排放 [J]. 大气与环境光学学报, 2013, 8, 416-421. [54]Dong Y P, Yu Y Y, Xu L, et al.Based on SOF-FTIR underway observation the characteristic VOCs in Nanjing key areas [J]. The Administration and Technique of Environmental Monitorings, 2015, 27, 41-44. [55]蕫艳平, 喻义勇, 徐亮, 等.基于SOF-FTIR方法走航观测南京市重点区域特征挥发性有机物 [J]. 环境监测管理与技术, 2015, 27, 41-44. [56]Zhai C Z, Liu R L, Xu L Pi, et al.Monitoring of VOCs emissions of Yanjia industrial park in Chongqing based on SOF-FTIR techology [J]. Journal of Atmospheric and Enviromental Optics, 2015, 10, 158-164. [57]翟崇治, 刘芮伶, 许丽萍, 等.利用SOF-FTIR监测重庆晏家工业区挥发性有机物排放[J]. 大气与环境光学学报, 2015, 10, 158-164. [58]Han X, Li X X, Gao M G, et al.Monitoring and analyzing VOCs pollution emissions in airport with SOF-FTIR [J]. Chinese Journal of Quantum Electronics, 2019, 36, 101-107. [59]韩昕, 李相贤, 高闽光, 等.基于SOF-FTIR的机场VOCs污染排放监测分析 [J]. 量子电子学报, 2019, 36, 101-107. [60]HU K, Xu L, Yang W F, et al.Optical design of solar spectrum ground-based tracking remote sensing system [J]. Chinese Journal of Quantum Electronics, 2021, 38, 290-300. [61]胡凯, 徐亮, 杨伟锋, 等.太阳光谱地基跟踪遥感系统光学设计 [J]. 量子电子学报, 2021, 38, 290-300. [62]Makarova M, Alberti C, Ionov D, et al.Emission Monitoring Mobile Experiment (EMME): an overview and first results of the St. Petersburg megacity campaign 2019 [J]. Atmos. Meas. Tech., 2021, 14, 1047-1073. [63]Kille N, Baidar S, Handley P, et al.The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6 [J]. Atmos. Meas. Tech., 2017, 10, 373-392. [64]Liu Z M, Liu W Q, Gao M G, et al.Study of the retrieval algorithm of emission gas spatio-temporal distribution of pollution source using the infrared Solar Occultation Flux (SOF) method [J]. Acta Physica Sinica, 2010, 59, 5397-5405. [65]刘志明, 刘文清, 高闽光, 等.基于红外掩日通量法(SOF)污染源排放气体浓度时空分布反演算法研究 [J]. 物理学报, 2010, 59, 5397-5405. [66] Li L B, Gong C, Cheng M T, et al.Measurement of emission fluxes of total non-methane alkanes from refineries using solar occultation flux remote sensing technique [J]. China Environmental Science, 2022. 42, 3046-3057. [67]李凌波, 宫超, 程梦婷, 等.红外掩日遥感监测炼油厂非甲烷烷烃排放通量 [J]. 中国环境科学, 2022. 42, 3046-3057. [68]Kille N, Zarzana K, Romero Alvarez J, et al.The CU airborne Solar Occultation Flux instrument: Performance evaluation during BB-FLUX [J]. ACS Earth and Space Chemistry, 2022, 6, 582-596. |
[1] | 刘聪, 岳恒, 马昕, 龚威 . 基于闪烁仪的热通量反演及MOD16产品校验[J]. 大气与环境光学学报, 2024, 19(4): 429-439. |
[2] | 杨栋森 #, 李婉赢 #, 陈江耀, 刘新然, 郑军 . 基于光通量计量法的紫外辐射测定方法建立及其应用研究[J]. 大气与环境光学学报, 2024, 19(2): 175-184. |
[3] | 孙喆, 刘书同, 张红, 卫尤文, 汪水兵, 洪星园, 王馨琦, 钱黎明, 朱森 . 合肥市工业园区秋季VOCs组分特征及其源解析[J]. 大气与环境光学学报, 2024, 19(2): 185-198. |
[4] | 杨晓钰, 王中挺, 潘光, 熊伟, 周伟, 张连华, 王兆军, . 卫星遥感温室气体的大气观测技术进展[J]. 大气与环境光学学报, 2022, 17(6): 581-597. |
[5] | 徐 波, 叶晓新, 张 毅∗, 杨晓龙, 李发帝. 利用便携式FTIR 技术获取城市餐饮 VOCs 排放特征[J]. 大气与环境光学学报, 2020, 15(5): 357-364. |
[6] | 刘伟,张天舒,陆钒,刘永超,周培松,胡荣春. 基于吸附管采样/冷阱聚焦方法的环境大气VOCs富集系统研究[J]. 大气与环境光学学报, 2019, 14(4): 266-271. |
[7] | 梁渠 张亚婷 张强领 邹雪 陈美玲 王鸿梅 黄超群 沈成银 储焰南. 质子转移反应飞行时间质谱的建立与性能研究[J]. 大气与环境光学学报, 2019, 14(4): 289-295. |
[8] | 刘永超 陆钒 刘伟 胡荣春. 环境大气VOCs色谱峰数据处理方法的设计与实现[J]. 大气与环境光学学报, 2019, 14(4): 272-0278. |
[9] | 赵文贤 李新 张艳娜. 不同光阑面积比值高精度测量方法[J]. 大气与环境光学学报, 2018, 13(3): 226-232. |
[10] | 曹京昊 康萌 邹雪 周文钊 陆燕 沈成银 黄超群 储焰南. 合肥董铺水库大气VOCs成分变化特征及源解析[J]. 大气与环境光学学报, 2017, 12(5): 362-370. |
[11] | 盛文阳 李健军 夏茂鹏 郑小兵 闫静. 基于PPLN晶体的高通量相关光子制备实验研究[J]. 大气与环境光学学报, 2017, 12(4): 305-312. |
[12] | 张琼 李昂 胡肇焜 吴丰成 谢品华. 基于OMI卫星数据结合车载DOAS技术修正的NOx排放通量估算[J]. 大气与环境光学学报, 2017, 12(1): 15-21. |
[13] | 陈彦锐 谭国斌 麦泽彬 周达荣 钟应铨 李雪 高伟 黄正旭. 利用单光子电离飞行时间质谱仪对塑料企业中VOCs的监测[J]. 大气与环境光学学报, 2017, 12(1): 58-65. |
[14] | 翟崇治 刘芮伶 许丽萍 金岭 余家燕 李礼 刘敏. 利用SOF-FTIR测量重庆晏家工业区挥发性有机物排放[J]. 大气与环境光学学报, 2015, 10(2): 158-164. |
[15] | 柯丽霞 沈成银 黄超群 陆燕 夏磊 陈小景 储焰南. 质子转移反应质谱检测不同品种桂花挥发性有机物[J]. 大气与环境光学学报, 2015, 10(1): 31-38. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 224
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 195
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||