大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (6): 636-645.doi: 10.3969/j.issn.1673-6141.2024.06.003

• 环境光学监测技术 • 上一篇    

基于NO2光解光通量计量法测定流动管反应室内硝酸盐光解频率

刘新然 1, 施晓雯 1, 陈晨 2, 宁禾山 2, 庞贻友 1, 黄子旋 1, 郑军 1*   

  1. 1 南京信息工程大学环境科学与工程学院, 江苏 南京 210044; 2 南京信息工程大学雷丁学院, 江苏 南京 210044
  • 收稿日期:2022-09-28 修回日期:2022-12-09 出版日期:2024-11-28 发布日期:2024-12-05
  • 通讯作者: E-mail: zheng.jun@nuist.edu.cn E-mail:zheng.jun@nuist.edu.cn
  • 作者简介:刘新然 (1998- ), 河北沧州人, 硕士研究生, 主要从事大气环境方面的研究。E-mail: liuxinran0024@163.com
  • 基金资助:
    国家自然科学基金 (41730106, 41975172), 江苏省研究生实践创新计划项目 (SJCX22_0371)

Determination of nitrate photolysis frequency inside flow tube reactor using NO2 actinometry

LIU Xinran 1, SHI Xiaowen 1, CHEN Chen 2, NING Heshan 2, PANG Yiyou 1, HUANG Zixuan 1, ZHENG Jun 1*   

  1. LIU Xinran 1, SHI Xiaowen 1, CHEN Chen 2, NING Heshan 2, PANG Yiyou 1, HUANG Zixuan 1, ZHENG Jun 1*
  • Received:2022-09-28 Revised:2022-12-09 Online:2024-11-28 Published:2024-12-05
  • Contact: Jun ZHENG E-mail:zheng.jun@nuist.edu.cn
  • Supported by:
    National Natural Science Foundation of China;Postgraduate Practice Innovation Program of Jiangsu Province

摘要: 近年来的研究表明硝酸盐的光解可能是日间大气亚硝酸 (HONO) 的重要来源之一。然而, 现有文献报道的 硝酸盐光解频率范围较大, 跨度可达1~2 个量级, 严重影响日间HONO来源解析的准确性。硝酸盐光解频率的测定 方法主要通过实验室流动管实验获得, 利用人工光源模拟太阳辐射, 其中对光源辐射强度的测定具有极大的不确定 性。本文基于二氧化氮 (NO2) 光解通量计量法对流动管内光源辐射强度进行了直接、精确测定并据此推导出硝酸盐光 解频率。其原理为NO2在光解后与氧气 (O2) 产生臭氧 (O3) 和一氧化氮 (NO), 臭氧光解的同时又与NO迅速反应生成 NO2, 达到准静态, 因此NO2在流动管内的光解频率 J(NO2) 可以根据实测的氮氧化物 (NOx) 和O3浓度计算得到。在获 得J(NO2) 基础上再运用已有研究的经验公式即可获得硝酸盐的光解频率 J(HNO3)。该方法与传统的硝酸盐水溶液光 度计法相比, 避免了由于水溶液对光强的影响而导致的测量误差, 同时该方法不受流动管内几何构型的影响, 直接获 得流动管内各处光解通量的集合, 使测定结果更加准确。在温度为25 ℃、气压为101.325 kPa 的条件下, 使用500 W氙 灯光源, 将光源置于天顶角为θ = 0°的正上方, 气体通过时间为61.7 s, 使用NO2光解法测得的J(NO2) 为6.78 × 10-3 s-1, 进而获得的J(HNO3) 为3.40 × 10-7 s-1。

关键词: 紫外辐射, 光解频率, 亚硝酸, 硝酸盐, 大气氧化能力

Abstract: Recent studies have shown that the photolysis of particulate nitrate may be one of the important sources of daytime atmospheric nitrous acid (HONO). However, the existing laboratory studies have reported a wide range of measured photolysis frequency of nitrate, spanning 1 to 2 orders of magnitude, which significantly affects the accurate assessment of the contribution of nitrate photolysis to daytime HONO formation. A common practice to determine the photolysis rates of nitrates is to use a flow tube reactor, where artificial light-source are commonly used to simulate solar radiation, so how to accurately obtain the radiation intensity of light sources is a critical step for this kind of experiments and may induce a significant uncertainty in measuring photolysis rates of nitrates. In this study, nitrogen dioxide (NO2) actinometry was used to determine the radiation intensity inside a flow tube. The principle is that NO2 will be photolyzed into NO and swiftly form ozone (O3) at the present of oxygen (O2). At the same time, O3 reacts with NO rapidly to form NO2. Eventually, a dynamic equilibrium will be reached. Therefore, the actinic flux and photolysis rates of NO2 J(NO2) can be deduced from the measured concentrations of NOx and O3, and then the photolysis frequency of nitrate J(HNO3) can be obtained by using the empirical formula. Different from the traditional nitrate solution actinometry, which uses nitrate actinometry to measure the absorbed radiation, the method proposed in this work avoids the bias of light absorption caused by water since no aqueous solution is present. Meanwhile, the NO2 actinometry does not depend on the physical configuration of the flow tube in this method and thus can provide more accurate measurement results. When a xenon light source (500 W) was set directly above the flow tube (i.e., zenith angle θ = 0°) and the gas passage time was 61.7 s under 1 standard atmospheric pressure and at 25 ℃, the J(NO2) measured by the NO2 photolysis method was 6.78 × 10-3 s-1, and J(HNO3) = 3.40 × 10-7 s-1 was finally obtained by using the empirical formula of previous studies.

Key words: ultra-violet radiation, photolysis rate, nitrous acid, particulate nitrate, atmospheric oxidative capacity

中图分类号: