大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (2): 199-210.doi: 10.3969/j.issn.1673-6141.2025.02.008

• 光学遥感 • 上一篇    

石家庄地表温度时空变化及驱动力探究

许珅燊 , 李崇贵 *   

  1. 西安科技大学测绘科学与技术学院, 陕西 西安 710054
  • 收稿日期:2023-02-03 修回日期:2023-05-08 出版日期:2025-03-28 发布日期:2025-03-24
  • 通讯作者: E-mail: 604523995@qq.com E-mail:604523995@qq.com
  • 作者简介:许珅燊 (1999- ), 女, 陕西西安人, 硕士研究生, 主要从事定量遥感方面的研究。E-mail: xush_enshen@163.com
  • 基金资助:
    国家重点研发计划项目 (2017YFD0600400)

Spatial and temporal variation and driving forces of land surface temperature in Shijiazhuang

XU Shenshen , LI Chonggui *   

  1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2023-02-03 Revised:2023-05-08 Online:2025-03-28 Published:2025-03-24

摘要: 基于2004 年6 月11 日、2009 年6 月25 日、2014 年6 月27 日、2020 年5 月22 日的Landsat 影像, 采用单窗算法对
石家庄市地表温度进行了反演, 分析了地表温度的时空动态变化特征, 并运用时空地理加权模型探讨了各驱动因子
的作用机制。结果表明: (1) 在研究的四景影像中, 石家庄地区地表温度最大值以1.997 ℃/a 的斜率从2004 年到2020
年呈上升趋势, 在2020 年达到最大。(2) 随着时间的推移, 地表温度在不同的地形因子下整体均呈现上升趋势; 空间
上, 地表温度随着海拔的上升先增加后下降, 随着坡度的增加而增加, 但不同坡向有所差异, 阴坡和阳坡之间的地表
温度最大相差0.566 ℃。(3) 与普通最小二乘回归以及地理加权回归相比, 时空地理加权为多驱动因子的最优模型, 其
中植被指数和相对土壤湿度对地表温度的驱动力最大, 月总降水的驱动力最弱。本研究结果可以为城市布局规划、生
态环境改善提供借鉴。

关键词: 地表温度, 单窗算法, 时空地理加权回归, 空间分布特征, 驱动力

Abstract: Based on the Landsat images of June 11, 2004, June 25, 2009, June 27, 2014 and May 22, 2020, the single-window algorithm was used to invert land surface temperature in Shijiazhuang City, China, and to analyze the spatiotemporal dynamic variation characteristics of land surface temperature, and then the spatiotemporally and geographically weighted model was used to explore the mechanism of each driving factor. The results showed that: (1) In the four panoramic images studied, the maximum land surface temperature in Shijiazhuang area showed an upward trend from 2004 to 2020 with a slope of 1.997 ℃/a, and reached the maximum in 2020. (2) With the passage of time, the land surface temperature showed an overall upward trend under different topographic factors. Spatially, land surface temperature first increased and then decreased with the increase of elevation, and on the other hand, it increased with the increase of slope, but there were differences in different slope directions, with the maximum difference of land surface temperature between the negative slope and the sunny slope of 0.566 ℃. (3) Compared with ordinary least square regression and geographically weighted regression, spatio-temporal geographically weighted model is the optimal model with multiple driving factors, in which the driving force of vegetation index and relative soil moisture on land surface temperature is the largest, while the driving force of monthly total precipitation is the weakest. The results of this study can provide reference for urban layout planning and ecological environment improvement.

Key words: land surface temperature, single window algorithm, geographically spatiotemporal weighted regression, spatial distribution characteristics, driving force

中图分类号: