大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (2): 211-224.doi: 10.3969/j.issn.1673-6141.2025.02.009

• 光学遥感 • 上一篇    

结合四叉树结构与尺度估计的遥感影像分类算法

范强 1, 魏宇 1*, 栾晓泽 2   

  1. 1 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000; 2 沈阳市市政工程设计研究院有限公司, 辽宁 沈阳 110000
  • 收稿日期:2022-03-15 修回日期:2022-04-21 出版日期:2025-03-28 发布日期:2025-03-24
  • 通讯作者: E-mail: 1404255347@qq.com E-mail:1404255347@qq.com
  • 作者简介:范强 (1979- ), 辽宁锦州人, 博士, 副教授, 硕士生导师, 主要从事遥感影像信息提取和专题地理信息系统等方面的研究。 E-mail: lntufanqiang@126.com
  • 基金资助:
    辽宁工程技术大学学科创新团队资助项目 (LNTU20TD-06)

Remote sensing image classification algorithm combining quadtree structure and scale estimation

FAN Qiang 1, WEI Yu 1*, LUAN Xiaoze 2   

  1. 1 School of Geomatics, Liaoning Technical University, Fuxin 123000, China; 2 Shenyang Municipal Engineering Design and Research Institute Co., Ltd, Shenyang 110000, China
  • Received:2022-03-15 Revised:2022-04-21 Online:2025-03-28 Published:2025-03-24

摘要: 面向对象影像分析方法因具有考虑对象光谱及形状信息等优势, 成为高分辨率遥感影像分类的主流方法。 影像分割是面向对象影像分析方法的重要步骤, 决定着影像分类的精度。同一影像存在多种地物特征, 单一的分割 尺度将会造成影像欠分割或错分割的现象, 因此需要不同的影像分割尺度。本文以分形网络演化算法为例, 提出结 合四叉树结构与尺度估计的遥感影像分类算法。该算法首先利用四叉树结构均匀检测分割的特点划分影像区域, 继 而通过统计平均局部方差的空间分割尺度估计方法以及统计局部方差直方图的属性分割尺度估计方法实现各区域分 割尺度定量估计, 从而采用分形网络演化算法对各区域影像进行多尺度分割。最后, 通过目视解译确定训练样本, 使 用最邻近监督分类法实现影像分类。实验结果表明, 本文提出的算法相较于经典面向对象分类算法, 分类精度提升 了1.2%, Kappa系数提升了0.036, 且可有效避免由错分割与欠分割现象导致的线状地物提取断裂、分类错误的问题。

关键词: 四叉树结构, 尺度估计, 多尺度分割, 分形网络演化算法, 监督分类

Abstract: Object-based image analysis (OBIA) method has become the mainstream method of highresolution remote sensing image classification due to its advantages of considering object spectrum, shape and texture feature information. Image segmentation is an important step of OBIA method, which determines the accuracy of image classification. The same image has a variety of ground features, and a single segmentation scale will cause the phenomenon of image undersegmentation or wrong segmentation, therefore, different image segmentation scales are often required in practical applications. Taking the fractal network evolution algorithm as an example, this paper proposes a remote sensing image classification algorithm combining quadtree structure and scale estimation. In this algorithm, the image region is firstly divided by using the characteristics of uniform detection and segmentation of quadtree structure, the quantitative estimation of segmentation scale of each region is realized by using the spatial segmentation scale estimation method of statistical average local variance and the attribute segmentation scale estimation method of statistical local variance histogram, and then the regional images are segmented at multiple scales using the fractal network evolution algorithm. Finally, the training samples are determined through visual interpretation, and the nearest neighbor supervised classification method is used to realize image classification. The experimental results show that compared with the classical object-based classification algorithm, the classification accuracy of the proposed algorithm is improved by 1.2% and the kappa coefficient is improved by 0.036. Moreover, the problems of linear feature extraction fracture and classification error caused by wrong segmentation and under segmentation in classical algorithm can be effectively avoided in the proposed algorithm.

Key words: quadtree structure, scale estimation, multiscale segmentation, fractal network evolutionary algorithm, supervised classification

中图分类号: