大气与环境光学学报 ›› 2012, Vol. ›› Issue (2): 147-153.

• 光电技术 • 上一篇    下一篇

自适应分层阈值小波去噪在雷达信号中的运用研究

陈臻懿, 刘文清, 张玉钧, 何俊峰, 阮俊, 崔益本, 李胜   

  1. (中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031)
  • 收稿日期:2011-09-01 出版日期:2012-03-28 发布日期:2012-03-29
  • 通讯作者: 陈臻懿(1983-),女,江苏南通人,博士研究生,研究方向为激光雷达数据处理。 E-mail:zychen@aiofm.ac.cn
  • 作者简介:陈臻懿(1983-),女,江苏南通人,博士研究生,研究方向为激光雷达数据处理。
  • 基金资助:

    公益性行业(气象)科研专项(GYHY200706023)资助

Investigation of Self-Adaptive Hierarchical Wavelet Denosing in Lidar Signal Processing

CHEN Zhen-yi, LIU Wen-qing, ZHANG Yu-jun, HE Jun-feng, RUAN Jun, CUI Yi-ben, LI Sheng   

  1. (Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei230031, China)
  • Received:2011-09-01 Published:2012-03-28 Online:2012-03-29

摘要:

在处理拉曼雷达回波信号过程中,采用小波去噪法进行算法反演前的数据预处理,针对小波去噪的核心问题——小波基的选择和阈值的设定提出了自适应分层阈值软门限去噪的方法,并选择了不同的小波基组合软硬阈值对去噪结果进行了对比。经实验数据验证,相对传统的滑动平均滤波,纯粹的细节和抑制全局阈值法,自适应分层阈值软门限在获取相同信号、保持相同能量的前提下能更好地恢复信号;在有云情况下信号的尖峰结构也没有变化,有效地抑制了噪声,提高了细节识别度和反演精度。

关键词: 气溶胶, 拉曼雷达, 小波去噪, 自适应分层软阈值

Abstract:

During the signal processing of the Raman backscattered lidar, the wavelet transform is used to reduce the noise. The setting of the threshold is the key factor in the transformation. A new method, the self-adaptive hierarchical denosing with a soft threshold is presented. Comparison of different wavelets and thresholds used in the denosing procedure are also described. Compared with the usual average method, such as detail depression method and global threshold method, the self-adaptive hierarchical denosing method can increase the SNR while with maintaining the character of the peak signal. And even when the clouds exist, the signal still can be identified without much change. The detail recognition and inverting precision are thus improved.

Key words: aerosol, Raman lidar, wavelet denoising, self adaptive hierarchical denosing with a soft threshold

中图分类号: