[1] World Health Organization. Review of evidence on health aspects of air pollution – REVIHAAP [R]. 2014.
[2] Lyons W A, Husar R B. SMS/GOES visible images detect a synoptic-scale air pollution episode [J]. Mon. Weather Rev., 1976, 104: 1623.
[3] Fraser R S, Kaufman Y J, Mahoney R L. Satellite measurements of aerosol mass and transport [J]. Atmos. Environ., 1984, 18: 2577-2584.
[4] Fishman J, Vukovich F M, Cahoon D, et al. The characterization of an air pollution episode using satellite total ozone measurements [J]. J. Appl. Meteor., 1987, 26: 1638-1654.
[5] Kaufman Y J, Tanré D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer [J]. J. Geophys. Res., 1997, 102 (D14): 17051-17067.
[6] Higurashi A, Nakajima T. Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR [J]. J. Atmos. Sci., 1999, 56(7): 924-941.
[7] Diner D J, Martonchik J V, Kahn R, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land [J]. Remote Sen. Environ., 2005, 94: 155-171.
[8] Sun Lin. Remote Sensing of Aerosols over Urban Areas [D]. Beijing: Doctorial Dissertation of Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2006(in Chinese).
孙林. 城市地区大气气溶胶遥感反演研究 [D]. 北京: 中国科学院遥感应用研究所博士论文, 2006.
[9] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements [J]. J. Geophys. Res., 2001, 106(5): 4913-4926.
[10] Remer L, Kaufman Y, Tanre D, et al. The modis aerosol algorithm, products, and validation [J]. J. Atmos. Sci., 2005, 62(4): 947-973.
[11] Levy R C, Remer L A, Mattoo S, et al. The second-generation operational algorithm: Retrieval of aerosol prosperities over land from inversion of MODIS spectral reflectance [J]. J. Geophys. Res., 2007, 112(D13): D13211.
[12] Li S, Chen L F, Tao J H, et al. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter [J]. Sci. China-Earth Sci., 2012, 55: 1545-1553.
[13] Li S, Garay M J, Chen L, et al. Comparison of GEOS-Chem aerosol optical depth with AERONET and MISR data over the contiguous United States [J]. J. Geophys. Res., 2013, 118: 11228-11241.
[14] Wang Z, Chen L, Li Q, et al. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China [J]. Remote Sens. Environ., 2012, 124: 679-688.
[15] Shang H, Chen L, Tao J, et al. Synergetic use of MODIS cloud parameters for distinguishing high aerosol loadings from clouds over the North China Plain [J]. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2014: 99.
[16] Li S, Chen L, Xiong X, et al. Retrieval of the Haze Optical Thickness in North China Plain Using MODIS Data [J]. IEEE Trans. Geosci. Remote Sens., 2013, 51: 2528-2540.
[17] Wang Zhongting, Li Qing, Li Shenshen, et al. The monitoring of haze from HJ-1 [J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 775-780(in Chinese).
王中挺, 厉青, 李莘莘, 等. 基于环境一号卫星的霾监测应用 [J]. 光谱学与光谱分析, 2012, 32(3): 775-780.
[18] Tao M, Chen L, Su L, et al. Satellite observation of regional haze pollution over the North China Plain [J]. J. Geophys. Res., 2012, 117(D12): D12203.
[19] Martin R V. Satellite remote sensing of surface air quality [J]. Atmos. Environ., 2008, 42: 7823-7843.
[20] Hoff R M, Christopher S A. Remote sensing of particulate pollution from space: Have we reached the promised land [J]. J. Air Waste Manag. Assoc., 2009, 59: 645-675.
[21] Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing [J]. Environ. Sci. Technol., 2005, 39: 3269-3278.
[22] Liu Y, Park R J, Jacob D J, et al. Mapping annual mean ground-level PM2.5concentrations using Multi-angle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States [J]. J. Geophys. Res.-Atmos., 2004,109(D22): D22206.
[23] Tao J H, Zhang M G, Chen L F, et al. Method to estimate concentration of surface-level particulate matter from satellite-based aerosol optical thickness [J]. Sci. China: Earth Sci., 2013, 56: 1422-1433.
[24] Hutchison K D, Faruqui S J, Smith S. Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses [J]. Atmos. Environ., 2008, 42: 530-543.
[25] Wang Z, Chen L, Tao J, Zhang Y, Su L, Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method [J]. Remote Sens. Environ., 2010, 114: 50-63.
[26] Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY: Mission objectives and measurement modes [J]. J. Atmos. Sci., 1999, 56: 127-150.
[27] Levelt P F, Van den Oord G H J, Dobber M R, et al. The Ozone Monitoring Instrument [J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1093-1101.
[28] Veefkind J P, de Haan J R, Brinksma E J, et al. Total ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique [J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1239-1244.
[29] Han D, Chen L F, Su L, et al. A convolution algorithm to calculate differential cross sections of the Ring effect in the Earth's atmosphere based on rotational Raman scattering [J]. Sci. China: Earth Sci., 2011, 54: 1407-1412.
[30] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI) [J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1259-1266.
[31] Yang K, Krotkov N A, Krueger A J, et al. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations [J]. J. Geophys. Res., 2007, 112: 24-43.
[32] Yang K, Krotkov N A, Krueger A J, et al. Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations [J]. Geophys. Res. Lett., 2009, 36: L03102.
[33] Yan H, Chen L, Tao J, et al. Corrections for OMI SO2 BRD retrievals influenced by row anomalies [J]. Atmos. Meas. Tech., 2012, 5: 2635-2646.
[34] Yang K, Dickerson R R, Carn S A, et al. First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China [J]. Geophys. Res. Lett., 2013, 40: 4957-4962.
[35] Yang K, Carn S A, Ge C, et al. Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS
[J]. Geophys. Res. Lett., 2014; 41: 4777-4786.
[36] Bennartz R, Preusker R. Representation of the photon pathlength distribution in a cloudy atmosphere using finite elements [J]. J. Quant. Spectr. Rad. Trans., 2006, 98: 202-219.
[37] Zou M, Chen L, Tao J, et al. Accuracy analysis of PPDF-based method to parameterize aerosol scattering effect [J]. Sci. China: Earth Sci., 2014, 57: 1807-1815.
[38] Chahine M T, Barnet C, Olsen E T, et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2 [J]. Geophys. Res. Lett., 2005, 32: L22803.
[39] Goldberg M D, Qu Y, McMillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction [J]. IEEE Trans. Geosci. Remote Sens., 2003, 41: 379-389.
[40] Crevoisier C, Chédin A, Matsueda H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations [J]. Atmos. Chem. Phys., 2009, 9(14): 4797-4810.
[41] Zhang Y, Xiong X, Tao J, et al. Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation [J]. Chinese Sci. Bull., 2014, 59(14): 1508-1518.
[42] Xiong X, Barnet C, Maddy E, et al. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)
[J]. J. Geophys. Res., 2008, 113(G00A01): 1-14.
[43] Buchwitz M. SCIAMACHY WFM-DOAS methane, carbon monoxide, and carbon dioxide columns: algorithm description and product specification [R]. IUP-SCIA-WFMD-ADPS-0003, Vers 2, Bremen, Germany, 2007. |