大气与环境光学学报 ›› 2016, Vol. 11 ›› Issue (6): 435-441.

• “先进环境监测技术与设备”专辑 • 上一篇    下一篇

基于Fast ICA及神经网络的机动车尾气NO和NO2定量分析研究

张恺1, 2, 张玉钧1 ? , 何莹1, 2, 尤坤1, 刘国华1, 2,陈晨1, 2, 高彦伟1, 2,贺春贵1, 2, 鲁一冰1, 2, 刘文清1   

  1. (1中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥, 230031; 
    2 中国科学技术大学, 安徽 合肥, 230026)
  • 收稿日期:2016-07-11 修回日期:2016-09-30 出版日期:2016-11-28 发布日期:2016-11-30
  • 通讯作者: 张恺,(1982-),男,上海徐汇人,博士研究生,主要从事环境光学及光电信息检测技术方面的研究。 E-mail:yjzhang@aiofm.ac.cn
  • 作者简介:张恺,(1982-),男,上海徐汇人,博士研究生,主要从事环境光学及光电信息检测技术方面的研究。
  • 基金资助:

    Supported by National High Technology Research and Development Program of China(国家863计划, 2014AA06A503), National Major Scientific Instruments and Equipment Development Project(国家重大科学仪器设备开发专项, 2012YQ22011902)

Quantitative Analysis of NO and NO2 from Vehicle Exhaust Emission Based on Fast ICA and ANN

ZHANG Kai1,2, ZHANG Yujun1*, HE Ying1,2, YOU Kun1, LIU Guohua1,2, CHEN Chen1,2, GAO Yanwei1,2, HE Chungui1,2, LU Yibing 1,2, LIU Wenqing1   

  1. (1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 
    2. University of Science and Technology of China, Hefei 230026, China)
  • Received:2016-07-11 Revised:2016-09-30 Published:2016-11-28 Online:2016-11-30

摘要:

机动车尾气对环境的危害日益加重,机动车尾气排放浓度的检测对大气污染治理具有重要意义。设计了基于非分散紫外的机动车尾气NO、NO2浓度检测系统,搭建了实验装置,获得NO、NO2混合气体的吸收光强后,利用快速不动点(Fast ICA)算法和人工神经网络模式识别算法对机动车尾气排放NO、NO2组分进行定量分析。实验结果表明,利用所设计的算法对600 ppm以内的NO气体和200 ppm以内的NO2气体浓度进行测量,其相对误差最大为1.54%,最小为0.25%。

关键词: 机动车尾气, NO, NO2, 定量分析, 快速固定点, 神经网络

Abstract:

With the increasing number of vehicles, the harm from vehicle exhaust to the environment becomes more and more serious. So the monitoring of the concentration of vehicle exhaust emissions is very important to assess the emission levels. The NO and NO2 quantitative detection system based on nondispersion ultraviolet (NDUV) for vehicle exhaust emissions is built, and the original data of the mixed tail gas is obtained. And then, the identification and quantitative analysis of NO & NO2 gas is carried out with fast independent component analysis(Fast ICA) and artificial neural network(ANN) recognition algorithms. It can be drawn from the results that using the two algorithms, the NO concentration (under 600 ppm) and NO2 concentration (under 200 ppm) can be detected accurately and the maximum relative error is 1.54%, and the minimum is 0.25%.

Key words: vehicle exhaust emission, NO, NO2, quantitative analysis, fast independent component analysis, artificial neural network

中图分类号: