大气与环境光学学报 ›› 2018, Vol. 13 ›› Issue (5): 388-394.

• 光电技术 • 上一篇    下一篇

基于小波阈值的激光探测声音信号去噪研究

王行芳,金施群*,侯少阳   

  1. (合肥工业大学光电技术研究院,现代显示技术省部共建国家重点实验室,特种显示技术教育部重点实验室,安徽 合肥 230009)
  • 出版日期:2018-09-28 发布日期:2018-09-28
  • 作者简介:王行芳(1988-),女,河南南阳人,研究生,主要从事智能信息处理方面的研究。
  • 基金资助:

    Supported by Ministry of Science and Technology of the People’s Republic of China (国家科技部重大科研仪器设备专项,2013YQ220749)

Research on De-noising Method of Laser Detection Sound Signal Based on Wavelet Threshold

WANG Xingfang , JIN Shiqun , HOU Shaoyang   

  1. (National Key Laboratory of Advanced Display Technology, Key Laboratory of Special Display Technology of the Ministry of Education,Academy of Photoelectric Technology, Hefei University of Technology, Hefei 230009, China )
  • Published:2018-09-28 Online:2018-09-28
  • Supported by:

    Supported by Ministry of Science and Technology of the People’s Republic of China (国家科技部重大科研仪器设备专项,2013YQ220749)

摘要:

激光声音探测技术是声音探测领域中重要的研究方向,但该探测技术极易受到背景光、大气湍流等引起的噪声干扰,对探测信号的噪声进行抑制是激光声音探测技术的关键。因此提出一种改进的阈值函数,通过调整参数可以改变小波系数估计值与原小波系数之间的偏差,同时尽量保存信号的特征信息。在实验室环境下通过实验验证了基于所提改进阈值函数的小波阈值去噪法的有效性,探测信号经去噪处理后噪声得到有效去除。

关键词: 激光声音探测技术, 噪声干扰, 阈值函数, 小波阈值去噪

Abstract:

Laser sound detection technology is an important research direction in the field of voice detection, but this detection technology is vulnerable to noise interferences, which are mainly caused by background light and atmospheric turbulence. The study of noise suppression of detection signal is the key of laser sound detection technology. Therefore, an improved threshold function is proposed. By adjusting parameters, the deviation between the wavelet coefficients and the original wavelet coefficients can be changed, and the feature information of the original signals can be preserved as much as possible. In laboratory environment, the effectiveness of wavelet threshold de-noising method based on the improved threshold function is verified by experiments. After de-noising, the noise is effectively removed.

Key words: laser sound detection technology, noise interference, threshold function, wavelet threshold de-noising

中图分类号: