大气与环境光学学报

• 环境光学监测技术 • 上一篇    下一篇

一种气体的微弱红外光谱特征提取方法

周亦翀1,2方勇华1,2,崔方晓2   

  1. 1中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026; 2中国科学院安徽光学精密机械研究所中国科学院通用光学定标与表征技术重点实验室 , 安徽合肥 230031
  • 出版日期:2018-11-28 发布日期:2018-11-14

Extraction Method of  Weak Infrared Spectra Feature of Gas

ZHOU Yichong1,2, FANG Yonghua1,2, CUI Fangxiao2   

  1. 1 School of Environment Science and Optoeclectronic Technology, University of Science and Technology of China,\quad Hefei~~ 230026, China;
    2 Key  Laboratory  of  Optical  Calibration  and  Characterization,
     Anhui  Institute  of  Optics  and  Fine  Mechanics,  Chinese  Academy  of  Sciences,\quad Hefei~~ 230031, China
  • Published:2018-11-28 Online:2018-11-14

摘要: 被动傅里叶变换红外遥测技术可以测量大部分污染气体,亮温光谱法能够在无需背景信息的前提下实现目标特征提取与识别。在野外进行实测时, 存在背景物体辐射、大气中成分辐射、仪器噪声等信号。当目标信号弱于这些信号时,亮温光谱法难以直接从实测光谱中提取目标特征。针对这一问题,提出了一种基于非负矩阵分解的光谱特征提取方法,在被动红外遥测模型基础上,通过对整个亮温光谱进行分析,得到目标光谱特征。实际测量以SO$_2$为目标气体进行野外实验,对该方法进行了验证,结果表明,在目标信号较弱的亮温光谱中仍然能够提取到SO$_2$的光谱特征,证明了方法的有效性。

关键词: 红外遥测, 亮温谱, 特征提取, 非负矩阵分解

Abstract: Most pollutant gases can be detected by passive Fourier transform infrared(FTIR) remote sensing technique, and brightness temperature technique can implement the extraction and identification of target feature without the premise of background information. There usually exist radiation of background objects, radiance of atmospheric composition, and noise from the instrument itself in field measurements. When the target signal is weaker than these signals, the target feature can't be extracted directly from the measured spectra by the brightness temperature technique. Accordingly, an extraction method of spectra feature from measured spectra based on non-negative matrix factorization(NMF) is proposed. It can get the target feature through the analysis of the brightness spectra on the basis of passive Fourier transform infrared remote sensing. The experiment is conducted with SO$_2$ as the target gas. The method is verified with the measured spectra. Results show that the feature of SO$_2$ can be extracted even if the target signal is weak. The validity of the method is proved.

Key words: infrared remote sensing, brightness temperature, feature extraction, non-negative matrix factorization

中图分类号: