[1]
Intergovernmental Panel on Climate Change. Climate Change 2013: Working Group I Contribution to the IPCC Fifth Assessment Report
Climate Change 2013: The Physical Science Basis [R]. 2013.
[2]
Stubenrauch C J, Cros S, Guignard A, et al. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder
AIRS and a statistical analysis in synergy with CALIPSO and CloudSat [J]. Atmospheric Chemistry And Physics, 2010, 10: 7197-7214.
[3]
Urankar G, Prabha T V, Pithurai G, et al. Aerosol and cloud feedbacks on surface energy balance over selected regions of
the indian subcontinent [J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D4): 183-204.
[4]
Probst P, Rizzi R, Tosi E, et al. Total cloud cover from satellite observations and climate models [J]. Atmospheric Research, 2012, 107: 161-170.
[5]
Ma J, Wu H, Wang C, et al. Multiyear satellite and surface observations of cloud fraction over China [J].
Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7655-7666.
[6]
Sodergren H, Mcdonald A, Bodeker G. An energy balance model exploration of the impacts of interactions between surface albedo,
water vapour and clouds on polar amplification [C]. EGU General Assembly Conference Abstract, 2017, 19: 11025.
[7]
Yoshida R, Okamoto H, Hagihara Y, et al. Global analysis of cloud phase and ice crystal orientation from
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using at-
tenuated backscattering
and depolarization ratio [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H32.
[8]
Dolinar E K, Dong X, Xi B. Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses
using satellite-surface observations [J]. Climate Dynamics, 2016, 46(7-8): 2123-2144.
[9]
Cesana G, Chepfer H. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP [J].
Journal of Geophysical Research: Atmospheres, 2013, 118(14): 7922-7937.
[10]
Thompson D R, Mccubbin I, Gao B C, et al. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy [J].
Journal of Geophysical Research: Atmospheres. 2016, 121(15): 9174-9190.
[11]
Riedi J, Marchant B, Platnick S, et al. Cloud thermodynamic phase inferred from merged POLDER and MODIS data [J].
Atmospheric Chemistry And Physics, 2010, 10(23): 11851-11865.
[12]
Twohy C H, Schanot A J, Cooper W A. Measurement of condensed water content in liquid and ice clouds using an airborne
counterflow virtual impactor [J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(1): 197-202.
[13]
Lin D. Temporal and spatial distribution and change trend of cloud water of different types clouds in southwest
China [J]. Journal of Arid Meteorology, 2015, 33(5): 748-755.
[14]
Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (1): cloud phase
determination [J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3885-3894.
[15]
Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (2): retrieval of
cloud effective radius and water path [J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3895-3906.
[16]
Zeng Zhaoliang, Guo Jianping, Ma Daxi, et al. Spatio-temporal variation of aerosol optical depth from
CALIPSO and MODIS data and their intercomparison [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(3): 210-220(in Chinese).
曾昭亮, 郭建平, 马大喜,等. 基于CALIOP和MODIS数据的气溶胶时空分布特征对比分析[J]. 大气与环境光学学报, 2017, 12(3): 210-220.
[17]
Platnick S, Meyer K G, King M D, et al. The MODIS cloud optical and microphysical products: collection 6 updates and
examples from Terra and Aqua [J]. IEEE Transactions on Geoscience \& Remote Sensing, 2016, 55(1): 502-525.
[18]
Marchant B, Platnick S, Meyer, K, et al. MODIS collection 6 shortwave-derived cloud phase classification
algorithm and comparisons with CALIOP [J]. Atmospheric Measurement Techniques. 2016, 8(11): 11893-11924.
[19]
Stephens G L, Vane D G, Boain R J, et al. The CloudSatmission and the A-Train: A new dimension of space-based
observations of clouds and precipitation [J]. Bulletin of the American Meteorological Society, 2002, 83(12): 1771-1790.
[20]
Winker D M, Pelon J, McCormick M P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds [C].
Proceedings of SPIE, 2003, 4893: 1-12.
[21]
Qiu Y, Wang J, Yang K. Statistical comparison of cloud and aerosol vertical properties between two eastern China regions
based on CloudSat/CALIPSO data [J]. Advances in Meteorology, 2017 (2017-3-2): 1-12.
[22]
Hagihara Y, Okamoto H, Luo Z J. Joint analysis of cloud top heights from CloudSat and calipso: new insights into cloud top
microphysics [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4087-4106.
[23]
Garnier A, Faivre M, Dubuisson P, et al. Retrieval of cloud and aerosol properties from combined IIR, lidar and WFC
observations of CALIPSO [J]. International Coordination Group on Laser Atmospheric Studies, 2012: 697-700.
[24]
Chan M A, Comiso J C. Arctic cloud characteristics as derived from MODIS, CALIPSO, and CloudSat [J]. Journal of Climate, 2013, 26(10): 3285-3306.
[25]
Kahn B H, Irion F W, Dang V T, et al. The atmospheric infrared sounder version 6 cloud products [J].
Atmospheric Chemistry and Physics, 2013, 13: 14477-14543.
[26]
Sassen K, Wang Z, Liu D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat [J].
Journal of Geophysical Research: Atmospheres, 2009, 114(D4): D00H06.
[27]
Yan W, RenJ Q, Lu W, et al. Cloud phase discrimination technology based on spaceborne millimeter wave radar and lidar
data [J]. Journal of Infrared And Millimeter Waves, 2011, 30(1): 68-73.
[28]
Minnis P, Kratz D P, Coakley Jr J A, et al. Cloud optical property retrieval (subsystem 4.3) [J]. Clouds Earth's
Radiant Energy System Algorithm Theoretical basis Documen, 1995, 3: 135-176.
[29]
Kahn B H, Chahine M T, Stephens G L, et al. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount [J].
Atmospheric Chemistry And Physics Discuss, 2008, 8(5): 1231-1248.
[30]
Delanoe J, HoganR J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared
radiometer [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D7): D07204.
[31]
McGill M J, Li L, Hart W D, et al. Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE [J].
Journal of Geophysical Research: Atmospheres, 2004, 109(D7): D07203.
[32]
Hu Y, Winker D, Vaughan M, et al. CALIPSO/ CALIOP cloud phase discrimination algorithm [J]. Journal of Atmospheric
and Oceanic Technology, 2009, 26(11): 2293-2309.
[33]
Delano\"e J, Hogan R J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds [J].
Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H29.
[34]
Bedka K M, Dworak R, Brunner J, et al. Validation of satellite-based objective overshooting cloud-top detection
methods using CloudSat cloud profiling radar observations [J]. Journal of Applied Meteorology And Climatology, 2012, 51(10): 1811-1822.
[35]
Sun-Mack S, Minnis P, Chen Y, et al. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data [C].
Proceedings of the SPIE, 2007, 6745: 674513.
[36]
Liang Xiaofang, Ma Jinji. Cloud phase discrimination algorithm based on CALIPSO data [J].
Journal of Atmospheric and Environmental Optics, 2012, 7(3): 203-207(in Chinese).
梁晓芳, 麻金继. 基于CALIPSO数据反演云相态的方法研究[J]. 大气与环境光学学报, 2012, 7(3): 203-207. |