大气与环境光学学报

• “高分五号卫星载荷研制”专辑续 • 上一篇    下一篇

"GF-5"卫星差分吸收光谱仪热控设计及验证

桂利佳1,曾议2*,司福祺2   

  1. 1上海卫星工程研究所,上海 200240; 2中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽合肥 230031
  • 发布日期:2019-03-22

Thermal Design and Validation of Spaceborne Differential Optical Absorption Spectrometer on "GF-5" Satellite

GUI Lijia1, ZENG Yi2*, SI Fuqi2   

  1. 1Shanghai Institute of Satellite Engineering, Shanghai 200240, China; 
    2Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences , Hefei 230031, China
  • Online:2019-03-22

摘要: 差分光谱仪是一种基于空间测量的精密光学仪器,整个寿命周期内对光机系统及探测器有较高的温度稳定性要求。为保证光路的精度,需要光学安装板
温度梯度小于2℃;为降低温度波动对信号的干扰,整轨温度波动要求小于2℃。光谱仪周边有多台载荷不同程度的遮挡,热环境复杂,给热控设计
带来较大困难。结合光谱仪热控需求及结构特点,详细分析了轨道外热流,采用对地面作为光学箱散热面、光学底板等温化设计、
以向阳面为电子学散热面、电子学箱与光学箱隔热等热控措施,实现了光谱仪高稳定性温控要求。热平衡试验与在轨数据表明,
光谱仪热控设计合理可行,能够满足在轨探测的温度指标。为后续型号光学遥感仪器高精度、高稳定的热控设计打下良好的基础。

关键词: 星载差分吸收光谱仪, 温度波动, 温度梯度, 热设计, 热仿真, 在轨验证

Abstract: Differential optical absorption spectrometer is a spaceborne optical instrument with precision mechanical structure aboard GF-5 satellite, and there are high temperature stability requirements to the optical-mechanical system and the detector throughout its life cycle. In order to ensure the accuracy of the optical path, the optical installation plate temperature gradient needs to be less than 2℃. In order to reduce the interference of temperature fluctuation to the signal, the temperature fluctuation within whole track is required less than 2℃. Locating with several payloads around, the thermal environment is complex, which makes the design of thermal control difficult. In combination with the thermal control requirements and structural characteristics of the spectrometer, the thermal flow outside on the orbit is analyzed in detail. The side toward earth is used as a heat dissipation surface. The isothermal design is applied for the optical bottom plate. The sunward surface of the instrument is taken as an electronic heat dissipation surface. Some measures are performed to keep the heat insulation between electronic box and optical box. The high stability of temperature control for the spectrometer is realized. The thermal balance test and on-orbit data show that the thermal control design of the spectrometer is reasonable and feasible, and can meet the temperature index demand for on-orbit detection. It builds a good foundation for the high-precision and high-stability thermal control design of the follow-up optical remote sensing instruments.

Key words: spaceborne differential optical absorption spectroscopy, temperature fluctuation, temperature gradient, thermal design, thermal simulation, on-orbit verification

中图分类号: