大气与环境光学学报 ›› 2019, Vol. 14 ›› Issue (4): 279-288.
张晓春1,宋庆利2,曹永3,王鹏2,于大江2,王缅1,温民1
收稿日期:
2018-01-05
修回日期:
2018-04-16
出版日期:
2019-07-28
发布日期:
2019-07-12
通讯作者:
张晓春
Received:
2018-01-05
Revised:
2018-04-16
Published:
2019-07-28
Online:
2019-07-12
摘要: 大气温室气体的监测,是掌握温室气体浓度时空变化特征及其影响因素依据。而大气本底监测反映了较大范围内,因人类活动而造成的大气成份长期变化,是温室气体监测的基础数据。大气本底站附近温室气体浓度相对较低,年变化范围小,从而对温室气体连续监测技术精度与稳定性提出了更高的要求。本文基于傅立叶红外技术与WHITE型多次反射池技术方法,研究大气本底温室气体CO2、CH4、N2O超低浓度检测系统。针对CO2、CH4、N2O的分子吸收光谱特征,采用碳化硅作为光源,将测量波段选择在1900-2600区间;采用模拟仿真,模拟不同透过系数和多种气体混合干扰状态下的仪器理论测量精度,根据验证结果,傅里叶红外仪器在CO2、CH4、N2O测量方面表现良好,满足超低浓度温室气体的监测需求。
张晓春,宋庆利,曹永,王鹏,于大江,王缅,温民. 基于傅立叶红外变换技术的温室气体在线监测仪在龙凤山大气温室气体本底站的应用[J]. 大气与环境光学学报, 2019, 14(4): 279-288.
1 Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change [M].
2nd ed. USA: John Wiley & Sons Inc, 2006: 1026-1053. 2 Tang Xiaoyan, Zhang Yuanhang, Shao Min. Atmospheric Environmental Chemistry [M].
2nd ed. Beijing: Higher Education Press, 2006: 528-532(in Chinese). 唐孝炎, 张远航, 邵敏. 大气环境化学 [M]. 第二版. 北京: 高等教育出版社, 2006: 528-532. 3 Ding Yihui. Climate Change [M]. Beijing: China Meteorological Press, 2010: 2-7(in Chinese).
丁一汇. 气候变化 [M]. 北京: 气象出版社, 2010: 2-7. 4 Wigley T M L. The Climate Change Commitment [J]. Science, 2005, 307(5716): 1766-1769.
5 Keeling C D, Whorf T P, Wahlen M, et al. Interannual extremes in the rate of rise of
atmospheric carbon dioxide since 1980 [J]. Nature, 1995, 375(6533): 666-670. 6 Barnola J M, Raynaud D, Korotkevich Y S, et al. Vostok ice core provides 160,000-year
record of atmospheric CO2 [J]. Nature, 1987, 329: 408-414. 7 Wang Mingxing, Zeng Qingcun. Carbon dioxide in the atmosphere―a review [J].
Chinese Journal of Atmospheric Sciences, 1986, 10(2): 212-219(in Chinese). 王明星, 曾庆存. 大气中的二氧化碳含量 [J]. 大气科学, 1986, 10(2): 212-219. 8 Ramanathan V, Cicerone R J, Kiehl J T, et al. Trace gas trends and their potential
role in climate change [J]. Journal of Geophysical Research, 1985, 90: 5547-5566. 9 Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI fifth
assessment report [J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076(in Chinese). 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点 [J]. 冰川冻土, 2013, 35(5): 1068-1076. 10 Stocker T F, Qin D, et al. IPCC, 2103: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 2013: 11-14. 11 Qin Tianbao. The ``Bottom-up'' approach in the Paris Agreement and its enlightenment [J].
Chinese Review of International Law, 2016(3): 64-76(in Chinese). 秦天宝. 论《巴黎协定》中``自下而上''机制及启示 [J]. 国际法研究, 2016(3): 64-76. 12 Wang Shaowu, Luo Yong, Zhao Zongci, et al. Struggle for amelioration of global warming [J].
Progressus Inquisitiones De Mutatione Climatis, 2013, 9(1): 61-66(in Chinese). 王绍武, 罗勇, 赵宗慈, 等. 为减缓全球变暖而奋斗 [J]. 气候变化研究进展, 2013, 9(1): 61-66. 13 Wei Yiming, Fan Ying, Wang Yi, et al. Suggestions and solutions to carbon emissions in
China [J]. Advances in Climate Change Research, 2006, 2(1): 15-20(in Chinese). 魏一鸣, 范英, 王毅, 等. 关于我国碳排放问题的若干对策与建议 [J]. 气候变化研究进展, 2006, 2(1): 15-20. 14 Wen Yupu, Shao Zhiqing, Xu XiaoBin, et al. Preliminary study of atmospheric CO2
variations at Mt. Waliguan [J]. China Environmental Science, 1993, 13(6): 420-424(in Chinese). 温玉璞, 邵志清, 徐晓斌, 等. 青海瓦里关大气二氧化碳本底浓度变化规律的观测研究 [J]. 中国环境科学, 1993, 13(6): 420-424. 15 Zhou lingxi, Zhang Xiaochun, Hao Qingju, et al. Study of the background greenhouse
gas observation [J]. Advances in Climate Change Research, 2006, 2(2): 63-67(in Chinese). 周凌晞,张晓春, 郝庆菊, 等. 温室气体本底观测研究 [J]. 气候变化研究进展, 2006, 2(2): 63-67. 16
Liu Lixin, Zhou Lingxi, Zhang Xiaochun, et al. The characteristics of atmospheric CO2 concentration variation of four national background stations in China [J]. Science in China: Series D Earth Sciences, 2009, 39(2): 222-228(in Chinese). 刘立新,周凌晞, 张晓春, 等. 我国4个国家级本底站大气CO2浓度变化特征 [J]. 中国科学D辑: 地球科学, 2009, 39(2): 222-228. 17 Jia Xiaofang, Zhang Xiaochun, Zhao Yanan, et al. Comparative analysis of CO2
background concentration between China mainland and neighboring countries and regions [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(2): 120-127(in Chinese). 贾小芳, 张晓春, 赵亚南, 等. 我国与周边国家和地区的CO2本底浓度对比分析 [J]. 大气与环境光学学报, 2017, 12(2): 120-127. 18 World Meteorological Organization/Global Atmosphere Watch. Global Atmosphere Watch Guide [R].
GAW Report No. 86 (WMO/ TD No.553). Geneva. 1993. 19 Komhyr W D, Waterman L S, Taylor W R. Semiautomatic non-dispersive infrared analyzer apparatus
for CO2 air sample analysis [J]. Journal of Geophysical Research: Oceans, 1983, 88(C2): 1315-1322. 20 Zhang Xiaochun. The gas-chromatograph observation of atmosphere CO2 and CH4 background
concentration [J]. Qinghai Meteorology, 1995(1): 13-19(in Chinese). 张晓春. 大气二氧化碳和甲烷本底浓度的气相色谱监测 [J]. 青海气象, 1995(1): 13-19. 21 Zhang Xiaochun, Zhao Yucheng, Nie Hong, et al. New NDIR observation system of
atmosphere CO2 background concentration and analysis of measurement [J]. Qinghai Environmental, 1998, 8(4): 149-152(in Chinese). 张晓春, 赵玉成, 乜虹, 等. 新型大气二氧化碳本底浓度红外监测系统及其测量结果的分析 [J]. 青海环境, 1998, 8(4): 149-152. 22 Fang Shuangxi, Zhou Lingxi, Zhang Fang, et al. Dual channel GC system for measuring
background atmospheric CH4, CO, N2O and SF6 [J]. Acta Scientiae Circum Stantiae, 2010, 30(1): 52-59(in Chinese). 方双喜,周凌晞,张芳, 等. 双通道气相色谱法观测本底大气中的CH4、CO、N2O、SF6 [J]. 环境科学学报, 2010, 30(1): 52-59. 23 Fang Shuangxi, Zhou Lingxi, Zang Kunpeng, et al. Measurement of atmospheric CO2
mixing ratio by cavity ring-down spectroscopy (CRDS) at the 4 background stations in China [J]. Acta Scientiae Circumstantiae, 2011, 31(3): 624-629(in Chinese). 方双喜,周凌晞, 臧昆鹏, 等. 光腔衰荡光谱(CRDS)法观测我国4 个本底站大气CO2 [J] . 环境科学学报, 2011, 31(3): 624-629. 24 Liu Yingming, Wang Jian, Yu Dahai, et al. Review of integrated cavity output
spectroscopy technology and its application [J]. Optical Instruments, 2009, 31(5): 87-91(in Chinese). 刘英明, 王健, 俞大海, 等. 积分腔输出光谱技术及其应用综述 [J].光学仪器, 2009, 31(5): 87-91. 25 Xia Lingjun, Liu Lixin, Zhou Lingxi, et al. Study on the in-situ measurement of
greenhouse gas by an improved FTIR [J]. Environmental Sicence, 2013, 34(11): 4159-4164(in Chinese). 夏玲君, 刘立新,周凌晞, 等. 改进的大气CO2、CH4、N2O、CO在 线观测FTIR系统 [J]. 环境科学, 2013, 34(11): 4159-4164. 26 Xu Liang, Liu Jianguo, Gao Minguang, et al. Monitoring and analysis of CO2 and CH4 using
long path FTIR spectroscopy over Beijing [J]. Spectroscopy and Spectral Analysis, 2007, 27(5): 889-891(in Chinese). 徐亮, 刘建国, 高闽光, 等. FTIR监测北京地区CO2和CH4及其变化分析 [J]. 光谱学与光谱分析, 2007, 27(5): 889-891. 27 Han Xiangyu, Lu Zhaofang. Greenhouse effect and greenhouse gases monitoring [J].
Analytical Instrumentation, 2011(6): 72-74(in Chinese). 韩香玉, 卢照方. 温室效应和温室气体监测 [J]. 分析仪器, 2011(6): 72-74. 28 Wang Wei, Liu Bing, Li Jianjun, et al. Progress on in-situ monitoring methods of atmospheric
greenhouse gases [J]. Environmental Engineering, 2015(6): 125-128(in Chinese). 汪巍, 刘冰, 李健军,等. 大气温室气体浓度在线监测方法研究进展 [J]. 环境工程, 2015(6): 125-128. 29 W.H. Steel. Interferometers without Collimation for Fourier spectroscopy [J]. Journal of The
Optical Society of America, 1964, 54(2):151-156 30 Wang Mingzhi. The basic principle and its application of FTIR [J]. Technology Wind, 2014(6): 112-113(in Chinese).
王明智. 傅立叶红外光谱仪(FTIR)的基本原理及其应用 [J]. 科技风, 2014(6): 112-113. 31 Zhu Jun, Liu Wenqing, Liu Jianguo, et al. Quantitative gas analysis using Fourier
transform infrared spectroscopy method [J]. Chinese Journal of Scientific Instrument, 2007, 28(1): 80-84(in Chinese). 朱军, 刘文清, 刘建国, 等. 傅里叶变换红外光谱学方法用于气体定量分析 [J]. 仪器仪表学报, 2007, 28(1): 80-84. 32 Xu Liang, Liu Jianguo, Gao Minguang, et al. Application of long open path FTIR system in
ambient air monitoring [J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 448-451(in Chinese). 徐亮, 刘建国, 高闽光, 等. 开放式长光程傅里叶变换红外光谱系统在环境气体分析中的应用 [J]. 光谱学与光谱分析, 2007, 27(3): 448-451. 33 Zhou Lingxi, Xia Lingjun, Zang Kunpen, et al. Cavity ring-down spectroscopy system for
measurement of atmospheric carbon dioxide : GB/T 34415-2017 [S].Beijing. China Quality and Standards Publishing & Media Co. Ltd. 2017. 周凌晞,夏玲君,藏昆鹏,等. 大气二氧化碳(CO2)光腔衰荡光谱观测系统: GB/T 34415-2017[S]. 北京: 中国质量标准出版传媒有限公司(中国标准出版社),2017. 34 Wu Yanling, Ning Shangjun, Yu Dajiang, et al. Characteristics of CO2 concentrations and
its variations at Longfengshan regional atmospheric background station in Northeast China [J]. Environmental Chemistry, 2015, 34(9): 1627-1632(in Chinese). 吴艳玲, 宁尚军, 于大江, 等. 龙凤山区域大气本底站大气二氧化碳(CO2)浓度变化特征 [J]. 环境化学, 2015, 34(9): 1627-1632. 35 World Meteorological Organization/Global Atmosphere Watch. 15th WMO/IAEA Meeting of Experts on
Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (Jena, Germany, 7-10 September 2009) [R]. GAW Report No. 194(WMO/TD No. 1553). Geneva. 2011. 36 Griffith D W T, Deutscher N M, Krummel, et al. The UOW FTIR trace gas analyser:
comparison with loflo, agage and tank measurements at Cape Grim and Gaslab [R]. Baseline Atmospheric Program, Australia, 2010. 37 Griffith D W T, Deutscher N M, Caldow C G R, et al. A Fourier transform infrared trace
gas analyser for atmospheric applications [J]. Atmospheric Measurement Techniques Discussions, 2012, 5(3): 3717-3769. 38 Esler M B, Griffith D W T, Wilson S R, et al. Precision trace gas analysis by FT-IR
spectroscopy 1. simultaneous analysis of CO2, CH4, N2O and CO in air [J]. Analytical Chemistry, 2000, 72(1): 206-215. 39 Hammer S, Griffith D W T, Konard G, et al. Assessment of multi-species in-situ FTIR for precise atmospheric greenhouse gas observation [J]. Atmospheirc Measurement Techniques Discussions, 2012, 5(3): 3645-3692. |
[1] | 张丽娟, 杨艺, 张建辉, 赵爱梅, 左辛利, 锡林哈斯, 额定敖其尔, 翁国庆, 毛慧琴, 陈辉, 陈琳涵, 赵少华, 王中挺, 刘诚, 张天舒, 陶明辉, 赖积保, 马鹏飞, 高吉喜. “五基”协同大气环境立体遥感监测系统应用研究(封面文章)[J]. 大气与环境光学学报, 2023, 18(3): 214-226. |
[2] | 杨晓钰, 王中挺, 潘光, 熊伟, 周伟, 张连华, 王兆军, . 卫星遥感温室气体的大气观测技术进展[J]. 大气与环境光学学报, 2022, 17(6): 581-597. |
[3] | 许镇义, 王瑞宾, 康 宇, ∗, 曹 洋, 张 聪, 王仁军, . 移动源排放遥测主要影响因素分析及预测[J]. 大气与环境光学学报, 2022, 17(2): 220-229. |
[4] | 王玉钟, 王焕钦∗, 胡俊涛, 桂华侨. 基于多传感器融合技术的微型空气质量监测系统优化设计[J]. 大气与环境光学学报, 2021, 16(4): 349-357. |
[5] | 杨 杰, 高 伟∗, 段茜茜, 胡 洋. 面向多尺度分割的疑似违章建筑提取算法[J]. 大气与环境光学学报, 2021, 16(1): 67-73. |
[6] | 康士鹏, 余同柱, ∗, 桂华侨, ∗, 员永兴, 王焕钦, 刘建国, . 机动车排放超细颗粒物在线监测技术研究进展 #br# [J]. 大气与环境光学学报, 2020, 15(6): 413-428. |
[7] | 李嘉晋, 廖然, 卓泽鹏, 余世骏, 马辉, . 利用偏振光散射技术的藻类絮凝过程监测[J]. 大气与环境光学学报, 2020, 15(1): 72-80. |
[8] | 朱余1,曹永2*,张付海1,佘晶京1,褚天高1. 基于傅立叶变换红外光谱技术的烟气超低排放监测系统应用研究[J]. 大气与环境光学学报, 2019, 14(2): 129-135. |
[9] | 赵敏杰,司福祺,周海金,汪世美,江宇. 星载大气痕量气体差分吸收光谱仪0~1数据处理研究[J]. 大气与环境光学学报, 2019, 14(1): 66-73. |
[10] | 田晓敏,刘东,徐继伟,王珍珠,王邦新,吴德成,钟志庆, 谢晨波,王英俭. 大气探测激光雷达网络和星载激光雷达技术综述[J]. 大气与环境光学学报, 2018, 13(6): 401-. |
[11] | 甘伟伟 易维宁 杜丽丽 叶函函. 温室气体监测仪星上光谱定标及不确定度分析[J]. 大气与环境光学学报, 2018, 13(2): 131-140. |
[12] | 桑浩 王先华 叶函函 蒋芸. 基于主成分分析的CO2统计反演方法[J]. 大气与环境光学学报, 2017, 12(3): 202-209. |
[13] | 贾小芳 张晓春 赵亚南 王缅 靳军莉. 我国周边国家和地区的CO2本底浓度及对比分析[J]. 大气与环境光学学报, 2017, 12(2): 120-127. |
[14] | 王汝雯 徐晋 李昂 谢品华. 基于短波红外波段吸收的CO2垂直柱浓度地基遥测反演方法研究[J]. 大气与环境光学学报, 2017, 12(1): 22-32. |
[15] | 陈彦锐 谭国斌 麦泽彬 周达荣 钟应铨 李雪 高伟 黄正旭. 利用单光子电离飞行时间质谱仪对塑料企业中VOCs的监测[J]. 大气与环境光学学报, 2017, 12(1): 58-65. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||