大气与环境光学学报 ›› 2020, Vol. 15 ›› Issue (2): 110-116.

• 环境光学监测技术 • 上一篇    下一篇

样品温度对激光诱导黄铜等离子体辐射特性的影响

王莉1,2, 周彧1,宫昊1,傅院霞1,徐丽1
  

  1. 1蚌埠学院理学院,安徽 蚌埠 233030;
    2光电材料科学与技术安徽省重点实验室, 安徽芜湖 241000
  • 出版日期:2020-03-28 发布日期:2020-03-24

Effect of Sample Temperature on Radiation Characteristics of Laser-Induced Cu Plasma

WANG Li1,2, ZHOU Yu1, GONG Hao1, FU Yuanxia1, XU Li1   

  1. 1Faculty of Science, Bengbu College, Bengbu 233030, China;
    2Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, Wuhu 241000, China
  • Published:2020-03-28 Online:2020-03-24

摘要: 为了研究样品温度变化对激光诱导铜等离子体特征参数的影响,利用单脉冲激光诱导激发加热台上的样品形成等离子体,
改变样品温度获得相应的黄铜等离子体发射光谱。分析了样品温度变化时特征谱线强度的变化,并在局部热
平衡(Local thermodynamic equilibrium, LTE)条件下,利用Boltzman方程和Stark展宽计算并获得不同样品温度
条件下等离子体电子温度和电子密度随时间的演化规律,同时讨论了激光诱导金属等离子体光谱增强的原因。
实验结果表明,延迟时间相同时,样品温度越高,谱线强度越强,电子温度和电子密度越大。由此可见,
适当升高样品温度可以提高谱线强度。

关键词: 激光诱导击穿光谱;样品温度;电子温度;电子密度, ICCD门延迟

Abstract: In order to study the effect of sample temperature on the characteristic parameters of laser-induced copper plasma, 
Cu sample on heating stage was excited by a single pulse laser to form plasma, and the corresponding plasma 
emission spectra of brass were obtained by changing the sample temperature. The intensity change of the 
characteristic spectral line corresponding to the change of sample temperature was analyzed, and the 
evolution rule of electron temperature and electron density with time at different sample temperatures 
are obtained by using Boltzmann equation and Stark broadening under the assumption of local thermodynamic 
equilibrium (LTE). At the same time, the cause of the radiation enhancement of laser-induced metal 
plasma was also discussed. The results showed that, given the same delay time, the higher the sample 
temperature is, the stronger the spectral intensity is, and the higher the electron 
temperature and electron density are. It is indicated that the resulting spectral intensity 
can be increased by increasing the sample temperature appropriately.

Key words: laser-induced breakdown spectroscopy, sample temperature, electron temperature, electron density; , ICCD gate delay