[1] |
Wang Zhibin, Hu Min, Wu Zhijun, et al. Reasearch on the formation mechanisms of new particles in the atmosphere [J]. Acta
|
|
Chimica Sinica, 2013, 71(4): 519-527 (in Chinese).
|
|
王志彬, 胡 敏, 吴志军, 等. 大气新粒子生成机制的研究 [J]. 化学学报, 2013, 71(4): 519-527.
|
[2] |
Zhang R Y, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical reviews, 2012,
|
11 |
2(3): 1957-2011.
|
[3] |
Wang Z B, Hu M, Pei X Y, et al. Connection of organics to atmospheric new particle formation and growth at an urban site of
|
|
Beijing [J]. Atmospheric Environment, 2015, 103: 7-17.
|
[4] |
Jiang J K, Chen M D, Kuang C A, et al. Electrical mobility spectrometer using a diethylene glycol condensation particle counter
|
|
for measurement of aerosol size distributions down to 1 nm [J]. Aerosol Science and Technology, 2011, 45(4): 510-521.
|
[5] |
Lehtipalo K, Leppa J, Kontkanen J, ¨ et al. Methods for determining particle size distribution and growth rates between 1 and 3
|
|
nm using the particle size magnifier [J]. Boreal Environment Research, 2014, 19(suppl. B): 215-236.
|
[6] |
Vanhanen J, Mikkila J, Lehtipalo K, ¨ et al. Particle size magnifier for nano-CN detection [J]. Aerosol Science and Technology,
|
20 |
11, 45(4): 533-542.
|
[7] |
Kuang C A, Chen M D, Zhao J, et al. Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric
|
|
nuclei [J]. Atmospheric Chemistry and Physics, 2012, 12(7): 3573-3589.
|
[8] |
Kulmala M, Vehkamaki H, Pet ¨ aj ¨ a T, ¨ et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations [J]. Journal of Aerosol Science, 2004, 35(2): 143-176.[9] Iida K, Stolzenburg M R, McMurry P H. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine
|
|
condensation particle counter [J]. Aerosol Science and Technology, 2009, 43(1): 81-96.
|
[10] |
Cai R L, Yang D S, Ahonen L R, et al. Data inversion methods to determine sub-3 nm aerosol size distributions using the
|
|
particle size magnifier [J]. Atmospheric Measurement Techniques, 2018, 11(7): 4477-4491.
|
[11] |
Cai R L, Yang D S, Fu Y Y, et al. Aerosol surface area concentration: A governing factor in new particle formation in Beijing
|
[J] |
Atmospheric Chemistry and Physics, 2017, 17(20): 12327-12340.
|
[12] |
Kontkanen J, Lehtipalo K, Ahonen L, et al. Measurements of sub-3 nm particles using a particle size magnifier in different
|
|
environments: From clean mountain top to polluted megacities [J]. Atmospheric Chemistry and Physics, 2017, 17(3): 2163-
|
|
2187.
|
[13] |
Xiao S, Wang M Y, Yao L, et al. Strong atmospheric new particle formation in winter in urban Shanghai, China [J]. Atmospheric Chemistry and Physics, 2015, 15(4): 1769-1781.
|
[14] |
Yu H, Zhou L Y, Dai L, et al. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in
|
|
China [J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2641-2657.
|
[15] |
Hao Jian, Yin Yan, Xiao Hui, et al. Observation of new particle formation and growth on Mount Huang [J]. China Environment
|
|
Science, 2015, 35(1): 13-22 (in Chinese).
|
|
郝 囝, 银 燕, 肖 辉, 等. 黄山大气气溶胶新粒子生长特性观测分析 [J]. 中国环境科学, 2015, 35(1): 13-22.
|
[16] |
Wang Honglei, Zhu Bin, Shen Lijuan, et al. Atmospheric particle formation events in Nanjing during summer 2010 [J].
|
|
Environment Science, 2012, 33(3): 701-710 (in Chinese).
|
|
王红磊, 朱 彬, 沈利娟, 等. 南京市夏季大气气溶胶新粒子生成事件分析 [J]. 环境科学, 2012, 33(3): 701-710.
|
[17] |
Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol [J]. Nature, 2014, 506(7489):
|
47 |
6-479.
|
[18] |
Kirkby J, Duplissy J, Sengupta K, et al. Ion-induced nucleation of pure biogenic particles [J]. Nature, 2016, 533(7604):
|
52 |
1-526.
|
[19] |
Tang Q X, Cai R L, You X Q, et al. Nascent soot particle size distributions down to 1 nm from a laminar premixed burnerstabilized stagnation ethylene flame [J]. Proceedings of the Combustion Institute, 2017, 36(1): 993-1000.
|
[20] |
Wang Y, Kangasluoma J, Attoui M, et al. The high charge fraction of flame-generated particles in the size range below 3 nm
|
|
measured by enhanced particle detectors [J]. Combustion and Flame, 2017, 176: 72-80.
|
[21] |
Kangasluoma J, Franchin A, Duplissy J, et al. Operation of the Airmodus A11 nano condensation nucleus counter at various inlet pressures and various operation temperatures, and design of a new inlet system [J]. Atmospheric Measurement Techniques,
|
20 |
16, 9(7): 2977-2988.
|
[22] |
Kangasluoma J, Kuang C A, Wimmer D, et al. Sub-3 nm particle size and composition dependent response of a nano- CPC
|
|
battery [J]. Atmospheric Measurement Techniques, 2014, 7(3): 689-700.
|
[23] |
Kangasluoma J, Kontkanen J. On the sources of uncertainty in the sub-3 nm particle concentration measurement [J]. Journal
|
|
of Aerosol Science, 2017, 112: 34-51.
|
[24] |
Cai R L, Chen D, Hao J M, et al. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing [J]. Journal
|
|
of Aerosol Science, 2017, 106: 111-119.
|
[25] |
Cai R L, Jiang J K. A new balance formula to estimate new particle formation rate: Reevaluating the effect of coagulation
|
|
scavenging [J]. Atmospheric Chemistry and Physics, 2017, 17: 12659-12675.
|
[26] |
Stolzenburg M R, McMurry P H. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function [J]. Aerosol Science and Technology, 2008, 42(6): 421-432.
|
[27] |
Deng C J, Fu Y Y, Dada L, et al. Seasonal characteristics of new particle formation and growth in urban Beijing [J]. Environmental science & technology, 2020, 54(14): 8547-8557.
|
[28] |
Kangasluoma J, Junninen H, Lehtipalo K, et al. Remarks on ion generation for CPC detection efficiency studies in sub-3-nm
|
|
size range [J]. Aerosol Science and Technology, 2013, 47(5): 556-563.
|
[29] |
Fernandez de la Mora J, Kozlowski J. Hand-held di ´ fferential mobility analyzers of high resolution for 1-30 nm particles: Design
|
|
and fabrication considerations [J]. Journal of Aerosol Science, 2013, 57: 45-53.[30] He K B, Yang F M, Ma Y L, et al. The characteristics of PM2.5 in Beijing, China [J]. Atmospheric Environment, 2001, 35:
|
49 |
59-4970.
|
[31] |
Liu J Q, Jiang J K, Zhang Q, et al. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 µm [J].
|
|
Frontiers of Environmental Science & Engineering, 2014, 10(1): 63-72.
|
[32] |
Maher E F, Laird N M. EM algorithm reconstruction of particle size distributions from diffusion battery data [J]. Journal of
|
|
Aerosol Science, 1985, 16(6): 557-570.
|
[33] |
Wiedensohler A. An approximation of the bipolar charge distribution for particles in the submicron size range [J]. Journal of
|
|
Aerosol Science, 1988, 19(3): 387-389.
|
[34] |
Chen X T, McMurry P H, Jiang J K. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers [J]. Aerosol Science and Technology, 2018, 52(8): 809-813.
|
[35] |
Cai R L, Jiang J K, Mirme S, et al. Parameters governing the performance of electrical mobility spectrometers for measuring
|
|
sub-3 nm particles [J]. Journal of Aerosol Science, 2018, 127: 102-115.
|