大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (1): 2-17.
王彩玉1,2,3, 苑克娥1,3,4∗, 时东锋1,3, 黄 见1,3, 杨 威1,3, 查林彬1,3, 朱文越1,3
出版日期:
2021-01-28
发布日期:
2021-02-02
通讯作者:
E-mail: keyuan@aiofm.ac.cn
作者简介:
王彩玉 (1995 -), 女, 河南漯河人, 硕士研究生, 主要从事激光雷达探测大气湍流研究。 E-mail: wangcaiy@mail.ustc.edu.cn
基金资助:
WANG Caiyu1,2,3, YUAN Kee1,3,4∗, SHI Dongfeng1,3, HUANG Jian1,3, YANG Wei1,3, ZHA Linbin1,3, ZHU Wenyue1,3
Published:
2021-01-28
Online:
2021-02-02
摘要: 激光在大气传输过程中, 由于湍流折射率的随机起伏会引起波前畸变、光斑漂移、闪烁等一系列光学湍流效 应, 因此严重制约了遥感成像系统和激光通信技术的发展。通过分析大气光学湍流对多个领域的影响, 指出了探测大 气光学湍流廓线的重要意义。要想获取光学湍流的时空分布规律并准确评估光学湍流对光学成像或激光传输系统的 影响, 就必须对光学湍流进行准确的测量。以光学湍流特征参数为视角, 介绍了目前国内外探测大气湍流廓线分布的 方法和研究进展, 总结了各技术方法的测量原理及优缺点。最后对拟开展的差分波前激光雷达探测大气湍流廓线的 方法进行了简要介绍, 该技术具有空间分辨率高且不存在聚焦焦移的探测优势。初步的仿真研究结果表明该雷达系 统对大气光学湍流廓线的探测具有可行性。
中图分类号:
王彩玉, 苑克娥, ∗, 时东锋, 黄 见, 杨 威, 查林彬, 朱文越, . 大气光学湍流廓线探测方法研究进展[J]. 大气与环境光学学报, 2021, 16(1): 2-17.
[1] | Zhou Xiuji. Advanced Atmospheric Physics [M]. Beijing: China Meteorological Press, 1991: 138. |
周秀骥. 高等大气物理学 [M]. 北京: 气象出版社, 1991: 138. | |
[2] | Andrews L C, Phillips R L. A new theory of optical scintillation for moderate-to-strong fluctuations [C]. Proceedings of SPIEThe International Society for Optical Engineering, 1999, 3609: 90-100. |
[3] | Cui L Y, Xue B D, Zhou F G. Analytical expressions for the angle of arrival fluctuations for optical waves propagation through |
moderate-to-strong non-Kolmogorov refractive turbulence [J]. Journal of the Optical Society of America A, 2013, 30(11): | |
2188. | |
[4] | Zhou P, Ma Y X, Wang X L, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence [J]. Optics |
Letters, 2010, 35(7): 1043. | |
[5] | Huang Y P, Zeng A P, Gao Z H, et al. Beam wander of partially coherent array beams through non-Kolmogorov turbulence [J]. |
Optics Letters, 2015, 40(8): 1619. | |
[6] | Rao R Z. Science and technology of atmospheric effects on optical engineering: Progress in 3rd quinquennium of 21st century |
[J] | Science China Technological Sciences, 2017, 60(12): 1771-1783. |
[7] | Cui J Q, Ma B K, Guo L X. Research on scintillation index of Laser beam propagation through atmospheric turbulence for |
double slant path [C]. 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), IEEE, 2012: | |
49 | 3-496. |
[8] | Hudcova L, Barcik P. Experimental measurement of beam wander in the turbulent atmospheric transmission media [C]. Proceedings of 22nd International Conference, Radioelektronika 2012, IEEE, 2012: 191-194. |
[9] | Churnside J H. Optical communications through a dispersive medium: a performance bound for photocounting [J]. Applied |
Optics, 1981, 20(4): 573-578. | |
[10] | Churnside J H, Mcintyre C M. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 1: Theory [J]. Applied Optics, 1978, 17(14): 2141-2147. |
[11] | Churnside J H, Mcintyre C M. Averaged threshold receiver for direct detection of optical communications through the lognormal atmospheric channel [J]. Applied Optics, 1977, 16(10): 2669-2676. |
[12] | Prokes A, Brancik L. Degradation of free space optical communication performance caused by atmospheric turbulence [C]. |
20 | 12 2nd International Conference on Advances in Computational Tools for Engineering Applications, 2012: 338-341. |
[13] | Moore C I, Burris H R, Stell M F, et al. Atmospheric turbulence studies of a 16 km maritime path [C]. Proceedings of SPIE-The |
International Society for Optical Engineering, 2005, 5793: 78-88. | |
[14] | Mudge K A, Silva K K M B D, Clare B A, et al. Scintillation index of the free space optical channel: Phase screen modelling |
and experimental results [C]. 2011 International Conference on Space Optical Systems and Applications, IEEE, 2011: 403-409. | |
[15] | Arockia Bazil Raj A, Arputha Vijaya Selvi J. Comparison of different models for ground-level atmospheric attenuation prediction with new models according to local weather data for FSO applications [J]. Journal of Optical Communications, 2015, |
36 | (2): 181-186. |
[16] | Kiasaleh K. Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence [J]. IEEE |
Transactions on Communications, 2006, 54(4): 604-607. | |
[17] | Wu Xiaojun, Wang Hongxing, Li Bifeng, et al. Affect analysis of atmospheric turbulence on fading characteristics in free-space |
optical system over different environments [J]. Chinese Journal of Lasers, 2015, 42(5): 0513001. | |
吴晓军, 王红星, 李笔锋, 等. 不同传输环境下大气湍流对无线光通信衰落特性分析 [J]. 中国激光, 2015, 42(5): 0513001. | |
[18] | Han Liqiang, You Yahui. Performance of multiple input multiple output free space optical communication under atmospheric |
turbulence and atmospheric attenuation [J]. Chinese Journal of Laser, 2016, 43(7): 0706004. | |
韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能 [J]. 中国激光, 2016, 43(7): 0706004. | |
[19] | Osborn J. Profiling the Turbulent Atmosphere and Novel Correction Techniques for Imaging and Photometry in Astronomy |
[D] | Durham: Durham University, 2010. |
[20] | Nilsson T, Haas R. Impact of atmospheric turbulence on geodetic very long baseline interferometry [J]. Journal of Geophysical |
Research: Solid Earth, 2010, 115(3): 1-11. | |
[21] | Aristidi E, Vernin J, Fossat E, et al. Monitoring the optical turbulence in the surface layer at Dome C, Antarctica, with sonic |
anemometers [J]. Monthly Notices of the Royal Astronomical Society, 2015, 454(4): 4304-4315. | |
[22] | Bufton J L, Minott P O, Fitzmaurice M W, et al. Measurements of turbulence profiles in the troposphere [J]. Journal of the |
Optical Society of America, 1972, 62(9): 1068-1070. | |
[23] | Majumdar A K, Eaton F D, Jensen M L, et al. Atmospheric turbulence measurements over desert site using ground-based |
instruments, kite/tethered-blimp platform, and aircraft relevant to optical communications and imaging systems: Preliminary | |
results [C]. Free-Space Laser Communications VI, 2006, 6304: 63040X. | |
[24] | Balsley B B. Turbulence observations over a desert basin using a kite/tethered-blimp platform [J]. Optical Engineering, 2000, |
39 | (9): 2517. |
[25] | Marks R D, Vernin J, Azouit M, et al. Antarctic site testing-microthermal measurements of surface-layer seeing at the South |
Pole [J]. Astronomy and Astrophysics Supplement Series, 1996, 118(2): 385-390. | |
[26] | Wu S, Hu X D, Han Y J, et al. Measurement and analysis of atmospheric optical turbulence in Lhasa based on thermosonde |
[J] | Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 201: 05241. |
[27] | Moulsley J T, Asimakopoulos D N, Cole R S, et al. Measureent of boundary layer structure parameter profiles by acoustic |
sounding and comparison with direct measurements [J]. Quarterly Journal of the Royal Meteorological Society, 1981, 107: | |
20 | 3-230. |
[28] | Forbes F F, Barker E S, Peterman K R, et al. High altitude acoustic soundings [C]. Proceedings of SPIE-The International |
Society for Optical Engineering. 1986, 551: 60-73. | |
[29] | Qiang X W, Liu T H, Feng S L, et al. Remote sensing of atmospheric turbulence profiles by laser guide stars [C]. Optical |
Measurement Systems for Industrial Inspection X, 2017, 10329: 103292H. | |
[30] | Eaton F D. Recent developments of optical turbulence measurement techniques (Invited Paper) [C]. Atmospheric Propagation |
II, 2005, 5793: 68-77. | |
[31] | Azouit M, Vernin J. Optical turbulence profiling with balloons relevant to astronomy and atmospheric physics [J]. Publications |
of the Astronomical Society of the Pacific, 2005, 117(831): 536-543. | |
[32] | Manning R M, Vyhnalek B. A microwave radiometric method to obtain the average path profile of atmospheric temperature |
and humidity structure parameters and its application to optical propagation system assessment [C]. Free-Space Laser Communication and Atmospheric Propagation XXVII, 2015, 9354: 935406. | |
[33] | Vyhnalek B E. Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing [C]. FreeSpace Laser Communication and Atmospheric Propagation XXIX, 2017, 10096: 100961G. |
[34] | Vernin J, Roddier F. Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. |
Evidence for a multilayer structure of the air turbulence in the upper troposphere [J]. Journal Optical Society of America, 1973, | |
63 | (3): 270-273. |
[35] | Avila R, Vernin J, Sanchez L J. Atmospheric turbulence and wind profiles monitoring with generalized scidar [J]. ´ Astronomy |
and Astrophysics, 2001, 369(1): 364-372. | |
[36] | Tokovinin A, Vernin J, Ziad A, et al. Optical turbulence profiles at Mauna Kea measured by MASS and SCIDAR [J]. Publications of the Astronomical Society of the Pacific, 2005, 117(830): 395-400. |
[37] | Tokovinin A. Turbulence profiles from the scintillation of stars, planets, and moon [J]. Revista Mexicana de Astronomia y |
Astrofisica: Serie de Conferencias, 2007, 31: 61-70. | |
[38] | Fuchs A, Tallon M, Vernin J. Focusing on a turbulent layer: principle of the “generalized SCIDAR” [J]. Publications of the |
Astronomical Society of the Pacific, 1998, 110(743): 86-91. | |
[39] | Shepherd H W, Osborn J, Wilson R W, et al. Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a |
modified SCIDAR instrument [J]. Monthly Notices of the Royal Astronomical Society, 2014, 437(4): 3568-3577. | |
[40] | Osborn J, Wilson R W, Sarazin M, et al. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT [J]. Monthly |
Notices of the Royal Astronomical Society, 2018, 478(1): 825-834. | |
[41] | Wilson R W. Slodar: Measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor [J]. Monthly Notices of |
the Royal Astronomical Society, 2002, 337(1): 103-108. | |
[42] | Butterley T, Wilson R W, Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR |
data [J]. Monthly Notices of the Royal Astronomical Society, 2006, 369(2): 835-845. | |
[43] | Osborn J, Wilson R, Butterley T, et al. Profiling the surface layer of optical turbulence with SLODAR [J]. Monthly Notices of |
the Royal Astronomical Society, 2010, 406(2): 1405-1408. | |
[44] | Lombardi G, Sarazin M, Char F, et al. Surface layer turbulence profiling with the SL-SLODAR and LuSci at ESO Paranal |
observatory [C]. Third AO4ELT Conference-Adaptive Optics for Extremely Large Telescopes, 2013, 2: 2-8. | |
[45] | Kornilov V, Tokovinin A A, Vozyakova O, et al. MASS: A monitor of the vertical turbulence distribution [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 2003, 4839 (2): 837-845. | |
[46] | Els S G, Schock M, Seguel J, ¨ et al. Study on the precision of the MASS turbulence profiler employed in the site testing |
campaign for the thirty meter telescope [J]. Applied Optics, 2008, 47(14): 2610-2618. | |
[47] | Hickson P, Lanzetta K. Measuring atmospheric turbulence with a lunar scintillometer array [J]. Publications of the Astronomical |
Society of the Pacific, 2004, 116(826): 1143-1152. | |
[48] | Tokovinin A, Bustos E, Berdja A. Near-ground turbulence profiles from lunar scintillometer [J]. Monthly Notices of the Royal |
Astronomical Society, 2010, 404(3): 1186-1196. | |
[49] | Thomas-osip J E, Prieto G, Berdja A, et al. Characterizing optical turbulence at the GMT site with MooSci and MASS-DIMM |
[J] | Publications of the Astronomical Society of the Pacific, 2012, 124(911): 84-93. |
[50] | Eaton F D, Peterson W A, Hines J R, et al. Comparison of two techniques for determining atmospheric seeing [C]. Proceedings |
of SPIE-The International Society for Optical Engineering, 1988, 926: 319-334. | |
[51] | Belen′kii M S, Roberts D W, Stewart J M, et al. Experimental validation of the differential image motion lidar concept [J]. |
Optics Letters, 2000, 25(8): 518. | |
[52] | Gatland I, Stewart J M, Gimmestad G G. Inversion techniques for the differential image motion lidar [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 2009, 7324: 73240C. | |
[53] | Tokovinin A. From differential image motion to seeing [J]. Publications of the Astronomical Society of the Pacific, 2002, |
11 | 4(800): 1156-1166. |
[54] | Gimmestad G G, Roberts D W, Stewart J M, et al. Testing of LIDAR system for turbulence profiles [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 2008, 6951: 695109. | |
[55] | Zhou Yingjie, Zhou Anran, Sun Dongsong, et al. Development of differential image motion LIDAR for profiling optical |
turbulence [J]. Infrared and Laser Engineering, 2016, 45(11):1-5. | |
周颖捷, 周安然, 孙东松, 等. 差分像移大气湍流廓线激光雷达的研制 [J]. 红外与激光工程, 2016, 45(11): 1-5. | |
[56] | Guo Jie, Sun Dongsong, Qiang Xiwen, et al. Error analysis of differential image motion lidar [J]. Acta Optica Sinica, 2014, |
34 | (8): 1130001. |
郭 洁, 孙东松, 强希文, 等. 差分像移湍流廓线激光雷达测量误差分析 [J]. 光学学报, 2014, 34(8): 1130001. | |
[57] | Jing X, Hou Z, Wu Y, et al. Development of a differential column image motion light detection and ranging for measuring |
turbulence profiles [J]. Optics Letters, 2013, 38(17): 3445. | |
[58] | Cheng Zhi. Detection Methods of Atmospheric Turbulence Profile Based on Differential Light Column Lidar [D]. Heifei: |
University of Science and Technology of China, 2017. | |
程 知. 基于差分光柱激光雷达的大气湍流强度廓线探测方法研究 [D]. 合肥: 中国科学技术大学, 2017. | |
[59] | Belen′kii M S, Bruns D, Hughes K A, et al. Cross-Path LIDAR for turbulence profile determination [C]. Advanced Maui |
Optical Space Surveillance Technologies Conference, 2007: 1-10. | |
[60] | Beleri′kii M S. Effect of residual turbulent scintillation and a remote-sensing technique for simultaneous determination of |
turbulence and scattering parameters of the atmosphere [J]. Journal of the Optical Society of America A, 1994, 11(3): 1150. | |
[61] | Belen′kii M S, Gimmestad G G. Design considerations for residual turbulent scintillation (RTS) lidar [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 1994, 2222: 628-632. | |
[62] | Cui Chaolong, Huang Honghua, Mei Haiping, et al. Residual turbulent scintillation lidar for detecting atmospheric turbulence |
[J] | High Power Laser and Particle Beam, 2013, 25(5): 1091-1096. |
崔朝龙, 黄宏华, 梅海平, 等. 探测大气湍流的光强闪烁激光雷达 [J]. 强激光与粒子束, 2013, 25(5): 1091-1096. | |
[63] | Zhao Qi. Atmospheric Turbulence Measurment with Scintillation Lidar [D]. Heifei: University of Science and Technology of |
China, 2018. | |
赵 琦. 利用闪烁激光雷达探测大气湍流的方法研究 [D]. 合肥: 中国科学技术大学, 2018. | |
[64] | Cui Chaolong, Huang Honghua, Mei Haiping, et al. Measurement of turbulence information using Mie scattering lidar [J]. |
Journal of Atmospheric and Environmental Optics, 2011, 6(2): 89-94. | |
崔朝龙, 黄宏华, 梅海平, 等. 利用米散射激光雷达获取湍流信息的方法研究 [J]. 大气与环境光学学报, 2011, 6(2): | |
89 | -94. |
[1] | 陈晓敏, 张洪玮, 孙康闻, 吴松华, . 基于相干多普勒激光雷达的斜程湍流参数反演方法研究[J]. 大气与环境光学学报, 2023, 18(1): 1-13. |
[2] | 汪惜今, 徐青山, 范传宇, 程晨, 戚鹏, 徐赤东 . 激光雷达探测整层大气昼夜气溶胶光学厚度[J]. 大气与环境光学学报, 2023, 18(1): 14-24. |
[3] | 李 林, 张治国, 杜传耀, 韦 涛, 于丽萍, 范雪波∗. 多普勒测风激光雷达与 L 波段探空对比分析[J]. 大气与环境光学学报, 2022, 17(5): 494-505. |
[4] | 崔 桐, 陈相成, 戴光耀, 张洪玮, 王琪超, 吴松华, ∗. 高分辨率变焦式连续波测风激光雷达设计与实验[J]. 大气与环境光学学报, 2022, 17(4): 393-408. |
[5] | 蔡振锋, 李 丁∗, 黄海虹. 2021 年春季沙尘传输对徐州地区气溶胶演变影响分析[J]. 大气与环境光学学报, 2022, 17(4): 409-419. |
[6] | 郭 航, 邵 慧∗, 陈 杰, 何子辛, 曹 铮, 汪慧民, 颜 普. 基于高光谱激光雷达的滞尘叶片光谱特征分析[J]. 大气与环境光学学报, 2022, 17(4): 420-428. |
[7] | 冯 攀∗, 张站业, 丁红波, . 一种激光雷达探测模块控制电路的设计和制作[J]. 大气与环境光学学报, 2022, 17(4): 465-475. |
[8] | 陈 标, 吴 东, ∗. 基于CALIOP 和MODIS 的北极地区海雾检测研究[J]. 大气与环境光学学报, 2022, 17(2): 267-278. |
[9] | 刘佳鑫, 云 龙, 邵士勇, 程雪玲, 宋小全, ∗. 深圳地区多普勒测风激光雷达的湍流观测[J]. 大气与环境光学学报, 2021, 16(5): 383-391. |
[10] | 王莉娜, 杨丽丽, ∗, 杨燕萍, 王 静, 陶会杰, 闭建荣. 基于多源资料的西北地区一次沙尘暴天气过程综合分析[J]. 大气与环境光学学报, 2021, 16(5): 392-403. |
[11] | 殷振平, 易 帆, ∗, 王 威, 何 芸, 柳付超, 张云鹏, 余长明, . 基于偏振激光雷达对远距离传输沙尘在局地混合过程的观测研究[J]. 大气与环境光学学报, 2021, 16(4): 299-306. |
[12] | 查书平, 李新宇, 张 东, 王文婧∗, 董 艳, 胡秀芳. 2020 年春节期间芜湖市典型大气污染过程分析[J]. 大气与环境光学学报, 2021, 16(2): 127-137. |
[13] | 刘清媛, 吴松华, ∗, 张凯临, 李荣忠, 翟晓春. 基于单–双高斯模型拟合法的测风激光雷达海上风电机组尾流特征分析[J]. 大气与环境光学学报, 2021, 16(1): 44-57. |
[14] | 金效梅, 朱文越, 刘庆, . 激光相干测风技术应用研究[J]. 大气与环境光学学报, 2020, 15(3): 161-173. |
[15] | 刘东, 周雨迪, 朱小磊, 陈扬, 徐沛拓, 刘崇, 王南朝, 沈雪. 大气海洋高光谱分辨率激光雷达鉴频特性研究[J]. 大气与环境光学学报, 2020, 15(1): 48-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||