大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (1): 58-66.

• 光学遥感 • 上一篇    下一篇

基于多特征融合的层次支持向量机遥感图像云检测


张 波1;2, 胡亚东1∗, 洪 津1   


  1. 1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031; 2 中国科学技术大学, 安徽 合肥 230026
  • 收稿日期:2020-02-23 修回日期:2020-04-28 出版日期:2021-01-28 发布日期:2021-02-02
  • 通讯作者: E-mail: huyadong@aiofm.ac.cn E-mail:huyadong@aiofm.ac.cn
  • 作者简介:张 波 (1990- ), 安徽马鞍山人, 硕士, 主要从事遥感图像处理方面的研究。 E-mail: zhangbo1@mail.ustc.edu.com
  • 基金资助:
    Supported by K.C.Wong Education Foundation “International Team of Advanced Polarization Remote Sensing Technology and Application” (王宽诚教育基金“先进偏振遥感技术与应用国际团队”, GJTD-2018-15)

Cloud Detection of Remote Sensing Images Based on H-SVM with Multi-Feature Fusion

1, 1   

  1. 1 Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China
  • Received:2020-02-23 Revised:2020-04-28 Published:2021-01-28 Online:2021-02-02

摘要: 云检测是遥感图像处理和应用的前提, 针对遥感图像云检测的准确率容易受到薄云及似云地物影响的挑战, 提出一种结合遥感影像灰度、纹理和频率特征的层次支持向量机云检测算法。该方法首先采用简单线性迭代聚类算 法将遥感图像分割为像素块, 再采用一种层次支持向量机分类器对遥感图像以像素块为单位进行云检测。层次支持 向量机的第一层将像素块初步分为 “云” 和 “地物” 两类。层次向量机的第二层针对第一层分类的结果分别设计两个 分类器进行进一步分类, 并将分类后的结果合并为 “厚云”、 “薄云”、 “地物” 三类。最后, 将分类结果进行膨胀处理, 得到最终的云检测结果。选取高分一号 WFV 的 RGB 波段遥感图像进行实验, 结果显示提出的新方法对实验图像的 云检测平均准确率为 95.4%, 表明该方法可适用于多种场景下遥感图像的云检测, 服务于遥感产品的生产和应用。

关键词: 云检测, 层次支持向量机, 简单线性迭代聚类, 多特征融合

Abstract: Cloud detection is the prerequisite of remote sensing image processing and application. It is a widely challenge that the accuracy of cloud detection from remote sensing image is easily influenced by thin clouds and cloud-like ground targets. Therefore, a hierarchical support vector machine (H-SVM) cloud detection algorithm combining grayscale, texture, and frequency features of remote sensing image is proposed in this work. Firstly, a  simple linear iterative clustering algorithm is used to segment the remote sensing image into pixel blocks. Secondly, a H-SVM classifier is designed to perform cloud detection on the segmented pixel blocks, where the first layer of the H-SVM preliminarily divides the pixel blocks into “cloud” and “landscape categories”, and the second layer containing two classifiers further classifies the classification results of the first layer and then merges the classified results into three categories of “thick cloud”, “thin cloud”, and “land features”. Finally, the classification results are processed using expansion algorithm to get the final cloud detection results. RGB band remote sensing images of GF-1 WFV are selected for verification experiments. It is shown that the method proposed in this study has an average accuracy of 95.4% for the cloud detection in the experimental images, which indicates that the method can be used for cloud detection of remote sensing images in multiple scenarios, and serve the production and application of remote sensing products.

Key words: cloud detection, hierarchical support vector machine, simple linear iterative clustering, multi-feature fusion

中图分类号: