[1] |
Yang Mian, Wang Yin. Spatial-temporal characteristics of PM2:5 and its influencing factors in the Yangtze River Economic
|
|
Belt [J]. China Population·Resources and Environment, 2017, 27(1): 91-100.
|
|
杨 冕, 王 银. 长江经济带 PM2:5 时空特征及影响因素研究 [J]. 中国人口·资源与环境, 2017, 27(1): 91-100.
|
[2] |
Jiang Yuncong, Yang Yuanjian, Wang Hong, et al. Urban-rural differences in PM2:5 concentrations in the representative cities
|
|
of China during 2015∼2018 [J]. China Environmental Science, 2019, 39(11): 4552-4560.
|
|
姜蕴聪, 杨元建, 王 泓, 等. 2015∼2018 年中国代表性城市 PM2:5 浓度的城乡差异 [J]. 中国环境科学, 2019, 39(11):
|
45 |
52-4560.
|
[3] |
Liu Shengdong, Shi junnan, Cheng Yong, et al. Review of pollution characteristics of PM2:5 in Chinese representative megacities [J]. Environmental Science Research, 2020, 33(2): 243-251.
|
|
刘晟东, 史君楠, 程 勇, 等. 中国典型城市群 PM2:5 污染特征研究进展 [J]. 环境科学研究, 2020, 33(2): 243-251.
|
[4] |
Yao Xuefeng, Ge Baozhu, Zheng Haitao, et al. Spatiotemporal distribution characteristics of PM2:5 concentration and its main
|
|
control factors in China based on multivariate data analysis [J]. Climatic and Environmental Research, 2018, 23(5): 596-606.
|
|
姚雪峰, 葛宝珠, 郑海涛, 等. 基于多元数据分析的我国 PM2:5 浓度及其主控因子的时空分布特征研究 [J]. 气候与环境
|
|
研究, 2018, 23(5): 596-606.
|
[5] |
Wei Chunxuan, Huang He, Zhai Zhenfang, et al. Analysis of meteorological elements and forecast method of haze day in
|
|
Hefei, China [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 419-430.
|
|
魏春璇, 黄 鹤, 翟振芳, 等. 合肥市霾日气象要素特征分析及预报方法研究 [J]. 大气与环境光学学报, 2019, 14(6):
|
41 |
9-430.
|
[6] |
Luo Hongyuan, Wang Deyun, Liu Yanling, et al. PM2:5 concentration prediction based on two-layer decomposition technique
|
|
and improved extreme learning machine [J]. System Engineering Theory and Practice, 2018, 38(5): 1321-1330.
|
|
罗宏远, 王德运, 刘艳玲, 等. 基于二层分解技术和改进极限学习机模型的 PM2:5 浓度预测研究 [J]. 系统工程理论与实
|
|
践, 2018, 38(5): 1321-1330.
|
[7] |
Qiao Junfei, Cai Jie, Han Honggui. Study on prediction of PM2:5 based on T-S fuzzy neural network [J]. English Translation
|
|
of Control Engineering, 2018, 25(3): 391-395.
|
|
乔俊飞, 蔡 杰, 韩红桂. 基于 T-S 模糊神经网络的 PM2:5 预测研究 [J]. 控制工程, 2018, 25(3): 391-395.
|
[8] |
Wu Chunlin, Li Qi, Hou Junxiong, et al. PM2:5 concentration prediction using convolutional neural networks [J]. Mapping
|
|
Science, 2018, 43(8): 72-79.
|
|
吴春霖, 李 琦, 侯俊雄, 等. 卷积神经网络的 PM2:5 预报模型 [J]. 测绘科学, 2018, 43(8): 72-79.
|
[9] |
Li Xiaoli, Mei Jianxiang, Zhang Shan. PM2:5 concentration prediction using BP Adaboost neural network based on modified
|
|
particle swarm optimization [J]. Journal of the Dalian University of Technology, 2018, 58(3): 99-106.
|
|
李晓理, 梅建想, 张 山. 基于改进粒子群优化 BP Adaboost 神经网络的 PM2:5 浓度预测 [J]. 大连理工大学学报, 2018,
|
58 |
(3): 99-106.
|
[10] |
Zhou Shanshan, Li Wenjing, Qiao Junfei. Prediction of PM2:5 concentration based on self-organizing recurrent fuzzy neural
|
|
network [J]. Journal of Intelligent Systems, 2018, 13(4): 21-28.
|
|
周杉杉, 李文静, 乔俊飞. 基于自组织递归模糊神经网络的 PM2:5 浓度预测 [J]. 智能系统学报, 2018, 13(4): 21-28.
|
[11] |
Cui Xianghui, Xie Jianfeng, Zhang Feng, et al. Establishment of PM2:5 prediction model based on deep learning [J]. Beijing
|
|
Surveying and Mapping, 2017, (6): 22-27.
|
|
崔相辉, 谢剑锋, 张 丰, 等. 基于深度学习的 PM2:5 预测模型建立 [J]. 北京测绘, 2017, (6): 22-27.
|
[12] |
Fan Junxiang, Li Qi, Zhu Yajie, et al. Aspatio-temporal prediction framework for air pollution based on deep RNN [J].
|
|
Surveying and Mapping Science, 2017, 42(7): 76-83, 120.
|
|
范竣翔, 李 琦, 朱亚杰, 等. 基于 RNN 的空气污染时空预报模型研究 [J]. 测绘科学, 2017, 42(7): 76-83, 120.
|
[13] |
Hu Xinchen. Research on Semantic Relationship Classification Based on LSTM [D]. Harbin: Harbin University of Technology,
|
|
2015.
|
|
胡新辰. 基于 LSTM 的语义关系分类研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[14] |
Xie Yi, Rao Wenbi, Duan Pengfei, et al. A Chinese POS tagging approach using CNN and LSTM-based hybrid model [J].
|
|
Journal of Wuhan University (Science Edition), 2017, 63(3): 246-250.
|
|
谢 逸, 饶文碧, 段鹏飞, 等. 基于 CNN 和 LSTM 混合模型的中文词性标注 [J]. 武汉大学学报 (理学版), 2017, 63(3):
|
24 |
6-250.
|
[15] |
Zhao Xiaoqiang, Song Zhaoyang. Adam optimized CNN super-resolution reconstruction [J]. Computer Science and Exploration, 2019, 13(5): 858-865.
|
|
赵小强, 宋昭漾. Adam 优化的 CNN 超分辨率重建 [J]. 计算机科学与探索, 2019, 13(5): 858-865.
|
[16] |
Huang Liwei, Jiang Bitao, Lv Shouye, et al. Survey on deep learning based recommender systems [J]. Journal of Computer
|
|
Science, 2018, 41(7): 1619-1647.
|
|
黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述 [J]. 计算机学报, 2018, 41(7): 1619-1647.
|
[17] |
Yang Bo, Su Xiaohong, Wang Yadong. A hybrid algorithm based on attention model [J]. Journal of Software, 2005, (6):
|
10 |
73-1080.
|
|
杨 博, 苏小红, 王亚东. 基于注意力模型的混合学习算法 [J]. 软件学报, 2005, (6): 1073-1080.
|
[18] |
Yang Guanci, Yang Jing, Li Shaobo, et al. Modified CNN algorithm based on Dropout and ADAM optimizer [J]. Journal of
|
|
Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(7): 122-127.
|
|
杨观赐, 杨 静, 李少波, 等. 基于 Dopout 与 ADAM 优化器的改进 CNN 算法 [J]. 华中科技大学学报 (自然科学版), 2018,
|
46 |
(7): 122-127.
|
[19] |
Chang Zihan. Electricity Price Prediction Based on Hybrid Model of Adam optimized LSTM Neural Network and Wavelet
|
|
Transform [D]. Lanzhou: Lanzhou University, 2019.
|
|
常子汉. 基于小波变换与 Adam 优化的 LSTM 电价预测研究 [D]. 兰州: 兰州大学, 2019.
|
[20] |
Breathe freely[EB/OL]. (2008-05-16) [2018-12-31]. http:// www.pm25.com.
|
|
绿色呼吸[EB/OL]. (2008-05-16) [2018-12-31]. http:// www.pm25.com/.
|
[21] |
Wu yunyun, Zhu Jianjun, Zuo Tingying. Investigation on the square root of the linear combination of the squre of RMSE and
|
|
smoothness for the Vondrak filter′s evaluation [J]. Journal of Wuhan University (Information Science Edition), 2012, 37(10):
|
12 |
12-1214.
|
|
吴芸芸, 朱建军, 左廷英. RMSE 的平方与平滑度的线性组合的平方根作为 Vondrak 滤波评价标准的探讨 [J]. 武汉大学
|
|
学报 (信息科学版), 2012, 37(10): 1212-1214.
|