大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (5): 443-456.
• 光学遥感 • 上一篇
杨 光1;2, 麻金继1;2∗, 孙二昌1;2, 吴文涵1;2, 郭金雨1;2, 林锡文1;2
收稿日期:
2020-11-09
修回日期:
2021-08-27
出版日期:
2021-09-28
发布日期:
2021-09-28
通讯作者:
E-mail: jinjima@ahnu.edu.cn
E-mail:E-mail: jinjima@ahnu.edu.cn
作者简介:
杨 光 (1996 - ), 安徽池州人, 硕士研究生, 主要从事遥感与地理信息系统方面的研究。 E-mail: yangguang@ahnu.edu.cn
YANG Guang1;2, MA Jinji1;2∗, SUN Erchang1;2, WU Wenhan1;2, GUO Jinyu1;2, LIN Xiwen1;2
Received:
2020-11-09
Revised:
2021-08-27
Published:
2021-09-28
Online:
2021-09-28
Contact:
Jinji MA
E-mail:E-mail: jinjima@ahnu.edu.cn
摘要: 基于 2004–2018 年 MODIS 长期观测的气溶胶日产品 MOD04 L2, 利用线性倾向估计法和 AOD-AE 气溶胶类 型划分法, 得到中国区域长时间序列的气溶胶光学特性与气溶胶类型的时空变化规律。研究表明, 在此期间: (1) 550 nm 处气溶胶光学厚度 (AOD) 高值分布在海拔较低、人口密集、工业发达的大城市群, 低值分布在人烟稀少、植被覆 盖度高的山区和草原; Ångstrom ¨ 波长指数 (AE) 高值分布在四川盆地边缘、贵州等地区, 低值分布在西北沙漠地区。 (2) 中国 73% 的地区 AOD 呈减小趋势, “胡焕庸线”东部的 AE 整体也呈减小趋势, 且 AOD 与 AE 均在 2014–2018 年期 间明显减小。 (3) 在季节变化趋势方面, AE 与 AOD 基本相反, 城市工业型气溶胶与 AOD 相同, 而清洁大陆型气溶胶 与 AOD 相反。 (4) 清洁大陆型气溶胶占比在 2014 年之后逐年递增, 说明中国空气质量逐渐改善。
中图分类号:
杨 光, 麻金继, ∗, 孙二昌, 吴文涵, 郭金雨, 林锡文, . 2004–2018 年间中国区域气溶胶时空变化特征研究[J]. 大气与环境光学学报, 2021, 16(5): 443-456.
YANG Guang, MA Jinji, ∗, SUN Erchang, WU Wenhan, GUO Jinyu, LIN Xiwen, . Spatio-Temporal Characteristics of Aerosols in China During 2004–2018[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 443-456.
[1] | Cai W, Li K, Liao H, et al. Weather conditions conducive to Beijing severe haze more frequent under climate change [J]. Nature |
Climate Change, 2017, 7(4): 257-262. | |
[2] | Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China |
[J] | Nature, 2014, 514(7521): 218-222. |
[3] | Li T H, Ma J H, Mo B. Does environmental policy affect green total factor productivity? Quasi-natural experiment based on |
China′s air pollution control and prevention action plan [J]. International Journal of Environmental Research and Public Health, | |
20 | 21, 18(15): 8216. |
[4] | Huang J, Pan X C, Guo X B, Li G X. Health impact of China′s air pollution prevention and control action plan: An analysis of |
national air quality monitoring and mortality data [J]. The Lancet Planetary Health, 2018, 2(7): e313-e323. | |
[5] | Liu Haizhi, Guo Haiyan, Ma Zhenfeng, et al. Temporal-spatial characteristics and variability in aerosol optical depth over |
China during 2001-2017 [J]. Environmental Science, 2019, 40(09): 3886-3897. | |
刘海知, 郭海燕, 马振峰, 等. 2001∼2017 年全国气溶胶光学厚度时空分布及变化趋势 [J]. 环境科学, 2019, 40(09): | |
38 | 86-3897. |
[6] | Ma Lixin, Qi Hong, Sun Xiazhong. Research progress on aerosol particle size distribution characteristics and respiratory |
system exposure assessment [J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3549-3558. | |
马丽新, 齐 虹, 孙霞忠. 大气气溶胶粒径分布特征与呼吸系统暴露评估研究进展 [J]. 环境科学学报, 2020, 40(10): | |
35 | 49-3558. |
[7] | 冯录召, 梁宗安, 杨 丽. 新冠病毒可通过气溶胶传播! [N]. 大众健康报, 2020-02-27(003). |
[8] | Wang Chenying, He Muquan, Chen Junhui, et al. Temporal and spatial variation characteristics of MODIS aerosol optical |
depth in Sichuan Basin from 2006 to 2017 [J]. Research of Environmental Sciences, 2020, 33(01): 54-62. | |
王晨莹, 何沐全, 陈军辉, 等. 2006–2017 年四川盆地 MODIS 气溶胶光学厚度时空变化特征 [J]. 环境科学研究, 2020, | |
33 | (01): 54-62. |
[9] | Bilal M, Nichol J E, Bleiweiss M P, et al. A simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over |
mixed surfaces [J]. Remote Sensing of Environment, 2013, 136: 135-145. | |
[10] | Wang Hailin, Liu Qiong, Chen Yonghang, et al. Applicability of MODIS C006 aerosol products in a typical environmental |
area of the Beijing-Tianjin-Hebei region [J]. Environmental Science, 2019, 40(01): 44-54. | |
王海林, 刘 琼, 陈勇航, 等. MODIS C006 气溶胶光学厚度产品在京津冀典型环境背景下的适用性 [J]. 环境科学, 2019, | |
40 | (01): 44-54. |
[11] | Zhang Yinglei, Cui Ximin. Spatial and temporal characteristics of AOD and Ångstrom exponent in the Yangtze River Delta ¨ |
based on MODIS C061 [J]. Environmental Science, 2020, 41(06): 2617-2624. | |
张颖蕾, 崔希民. 基于 MODIS C061 的长三角地区 AOD 与 Ångstrom ¨ 指数时空变化分析 [J]. 环境科学, 2020, 41(06): | |
26 | 17-2624. |
[12] | Wang Yuesi, Xin Jinyuan, Li Zhanqing, et al. AOD and Ångstrom parameters of aerosols observed by the Chinese sun ¨ |
hazemeter network from August to December 2004 [J]. Environmental Science, 2006, 27(9): 1703-1711. | |
王跃思, 辛金元, 李占清, 等. 中国地区大气气溶胶光学厚度与 Ångstrom ¨ 参数联网观测 (2004–08∼2004–12) [J]. 环境科 | |
学, 2006, 27(9): 1703-1711. | |
[13] | Zhao Shiwei, Gao Xiaoqing. Study of aerosol optical depth and Ångstrom exponent in the northwest of China based on MODIS ¨ |
product [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(05): 321-331. | |
赵仕伟, 高晓清. 基于 MODIS 数据的西北地区气溶胶光学厚度和 Ångstrom ¨ 波长指数的研究 [J]. 大气与环境光学学报, | |
20 | 17, 12(05): 321-331. |
[14] | Chen Hao, Gu Xingfa, Cheng Tianhai, et al. Characteristics of aerosol types over China [J]. Journal of Remote Sensing, 2013, |
17 | (06): 1559-1571. |
陈 好, 顾行发, 程天海, 等. 中国地区气溶胶类型特性分析 [J]. 遥感学报, 2013, 17(06): 1559-1571. | |
[15] | Kim S W, Yoon S C, Kim J Y, et al. Seasonal and monthly variations of columnar aerosol optical properties over east Asia |
determined from multi-year MODIS, lidar and AERONET sun/sky radiometer measurements [J]. Atmospheric Environment, | |
20 | 07, 41(8): 1634-1651. |
[16] | Zhang J, Reid J S. A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade |
over-water MODIS and Level 2 MISR aerosol products [J]. Atmospheric Chemistry and Physics, 2010, 10(22): 10949-10963. | |
[17] | Guo Wanzhen, Zhang Fei, Xia Nan, et al. Spatio-temporal characteristics of aerosol optical depth and their relationship with |
urbanization over China′s land in nearly a decade [J]. Acta Scientiae Circumstantiae, 2019, 39(07): 2339-2352. | |
郭婉臻, 张 飞, 夏 楠, 等. 近十年中国陆地 AOD 时空分布及与城市化的关系研究 [J]. 环境科学学报, 2019, 39(07): | |
23 | 39-2352. |
[18] | Lei Xi. The Spatial and Temporal Characteristics of Atmospheric Aerosol and Its Environmental Effects over the Belt and Road |
[D] | Chongqing: Southwest University, 2019. |
雷 茜. “一带一路”区域大气气溶胶时空动态特征及环境效应研究 [D]. 重庆: 西南大学, 2019. | |
[19] | Zhou C Y, Liu Q H, Tang Y, et al. Comparison between MODIS aerosol product C004 and C005 and evaluation of their |
applicability in the north of China [J]. Journal of Remote Sensing, 2009, 13(5): 854-872. | |
[20] | Ichoku C, Kaufman YJ, Remer L A, et al. Global aerosol remote sensing from MODIS [J]. Advances in Space Research, 2004, |
34 | (4): 820-827. |
[21] | Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land |
from inversion of moderate resolution imaging spectroradiometer spectral reflectance [J]. Journal of Geophysical Research: | |
Atmospheres, 2007, 112(D13): D13211. | |
[22] | Remer L A, Kaufman Y J, Tanre D, ´ et al. The MODIS aerosol algorithm, products and validation [J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973. |
[23] | Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean [J]. Atmospheric |
Measurement Techniques, 2013, 6(11): 2989-3034. | |
[24] | Kumar K R, Kang N, Yin Y. Classification of key aerosol types and their frequency distributions based on satellite remote |
sensing data at an industrially polluted city in the Yangtze River Delta, China [J]. International Journal of Climatology, 2018, | |
38 | (1): 320-336. |
[25] | Zhang Hao, Deng Xueliang, Shi Chun′e. Application of MODIS aerosol products in monitoring visibility [J]. Environmental |
Science & Technology, 2015, 38(08): 49-55. | |
张 浩, 邓学良, 石春娥. MODIS 气溶胶产品在大气能见度监测中的应用 [J]. 环境科学与技术, 2015, 38(08): 49-55. | |
[26] | Sun Zhiqiang, Ji Dongsheng, Song Tao, et al. Observations and comparison analysis of air pollution in Beijing and nearly |
surrounding areas during Beijing 2008 Olympic games [J]. Environmental Science, 2010, 31(12): 2852-2859. | |
孙志强, 吉东生, 宋 涛, 等. 奥运时段北京及近周边区域空气污染观测与比对分析 [J]. 环境科学, 2010, 31(12): | |
28 | 52-2859. |
[27] | Wang Yanfang, Zhang Jun. Can environmental regulation improve air quality? An empirical evidence of Beijing Olympic |
games [J]. China population, resources and environment, 2014, 24(5): 166-168. | |
王艳芳, 张 俊. 奥运会对北京空气质量的影响: 基于合成控制法的研究 [J]. 中国人口·资源与环境, 2014, 24(5): 166-168. | |
[28] | Yang Siyue, Wang Feng, Liu Na. Assessment of the air pollution prevention and control action plan in China: a difference-indifference analysis [J]. China Population, Resources and Environment, 2020, 30(5) :110-117. |
杨斯悦, 王 凤, 刘 娜.《大气污染防治行动计划》实施效果评估: 双重差分法 [J]. 中国人口·资源与环境, 2020, 30(5): | |
11 | 0-117. |
[29] | Ai Ze, Chen Quanliang. Temporal and spatial distribution of aerosol optical depth in Sichuan and its correlation with meteorological factors [J]. Sichuan Environment, 2019, 38(04): 79-86. |
艾 泽, 陈权亮. 四川地区气溶胶光学厚度时空分布及其与气象因子的相关性分析 [J]. 四川环境, 2019, 38(04): 79-86. | |
[30] | Feng Qing. Study on evolution of spatial correlation structure of carbon emission and its influencing factors in ChengduChongqing urban agglomeration [D]. Xi′an: Xi′an University of Architecture and Technology, 2020. |
冯 庆. 成渝城市群碳排放空间关联结构演化及其影响因素研究 [D]. 西安: 西安建筑科技大学, 2020. | |
[31] | Zhang Junchi. Policy Research on Ecological Environment Management in Western China [D]. Yangling: Northwest A & F |
University, 2012. | |
张军驰. 西部地区生态环境治理政策研究 [D]. 杨凌: 西北农林科技大学, 2012. |
[1] | 董鉴韬, 李正强, 谢一凇, 樊程, 洪津, 戴刘新, 顾浩然, 郑杨 . 基于GF-5(02) 卫星DPC数据的2022年春季陆表细粒子气溶胶光学厚度空间分布[J]. 大气与环境光学学报, 2023, 18(4): 323-338. |
[2] | 翟颖超, 王涵, 赵梅如, 陈科, 李林森 . 山区气溶胶多角度偏振遥感地气解耦方法评估[J]. 大气与环境光学学报, 2023, 18(4): 339-356. |
[3] | 孙二昌, 麻金继, 吴文涵, 杨光, 郭金雨, . Himawari-8气溶胶变分同化对PM2.5污染模拟的改进[J]. 大气与环境光学学报, 2023, 18(1): 59-72. |
[4] | 汪惜今, 徐青山, 范传宇, 程晨, 戚鹏, 徐赤东 . 激光雷达探测整层大气昼夜气溶胶光学厚度[J]. 大气与环境光学学报, 2023, 18(1): 14-24. |
[5] | 黄冬, 李新, 张艳娜, 张允祥 . 全自动太阳光度计温控系统设计及测试[J]. 大气与环境光学学报, 2023, 18(1): 73-81. |
[6] | 王雪林, 陈文忠∗. 亚北极太平洋气溶胶光学厚度与净初级生产力的变化特征及其相关性研究[J]. 大气与环境光学学报, 2022, 17(5): 558-569. |
[7] | 吴文涵, 麻金继∗, 孙二昌, 郭金雨, 杨 光, 王宇瑶. 基于深度学习的云参量反演方法研究[J]. 大气与环境光学学报, 2022, 17(4): 453-464. |
[8] | 何 娟, 张 华, ∗, 苏红娟, 周喜讯, 陈 琪, 谢 冰, 游 婷. 全球分光地表反照率的长期变化[J]. 大气与环境光学学报, 2022, 17(3): 279-293. |
[9] | 陈 标, 吴 东, ∗. 基于CALIOP 和MODIS 的北极地区海雾检测研究[J]. 大气与环境光学学报, 2022, 17(2): 267-278. |
[10] | 贾宏亮, 罗 俊, 肖东升∗. 基于遥感数据和GWR 模型的成都PM2.5 浓度时空分布特征研究[J]. 大气与环境光学学报, 2021, 16(6): 529-540. |
[11] | 唐 燕∗, 许 睿, 孟繁玥. 中国东部典型城市群AOD 时空演变及预测[J]. 大气与环境光学学报, 2021, 16(4): 320-330. |
[12] | 王子翔, 李正强, ∗, 光 洁, 佘 璐. GF-4 大气校正并行算法研究[J]. 大气与环境光学学报, 2021, 16(3): 269-282. |
[13] | 葛 鹏, 张天舒∗, 付毅宾, 项 衍. 基于AERONET 的北京地区气溶胶光学特性分析[J]. 大气与环境光学学报, 2021, 16(1): 18-27. |
[14] | 陈 杰, 李正强∗, 常文渊∗, 张 莹, 魏瑗瑗, 谢一凇, 葛邦宇, 张 驰, . 基于改进GSI 系统的气溶胶变分同化对WRF-Chem PM2.5 分析和预报的影响评估[J]. 大气与环境光学学报, 2020, 15(5): 321-333. |
[15] | 施益强, 陈坰烽, 王 坚, 黄宝燕, 吴 君, 陈颖锋, 肖钟湧, ∗. 厦门市MODIS 气溶胶光学厚度与PM2.5 的时空特征及其相关性[J]. 大气与环境光学学报, 2020, 15(5): 334-346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||