大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (1): 125-134.
朱 鑫, 陈庆彩∗, 王擎雯, 李锦雯, 程静雯, 郎涵睿, 王茂颖
收稿日期:
2021-08-19
修回日期:
2021-09-06
出版日期:
2022-01-28
发布日期:
2022-01-28
通讯作者:
E-mail: chenqingcai@sust.edu.cn
E-mail:chenqingcai@sust.edu.cn
作者简介:
朱 鑫 (2000 - ), 女, 陕西西安人, 主要从事大气污染方面的研究。 E-mail: zhux1127@163.com
基金资助:
ZHU Xin, CHEN Qingcai∗, WANG Qingwen, Li Jinwen, CHENG Jingwen, LANG Hanrui, WANG Maoying
Received:
2021-08-19
Revised:
2021-09-06
Published:
2022-01-28
Online:
2022-01-28
摘要: 利用离线滤膜-溶剂提取-连续光谱分析的方法在 2016 年 12 月 25 日到 2017 年 12 月 26 日期间对西安市大气 颗粒物进行了连续一年的监测与分析。用石英纤维滤膜收集大气 PM2:5 样品, 再分别利用超纯水和甲醇超声萃取样品 中的水溶性有机碳 (WSOC) 和甲醇可溶性有机碳 (MSOC), 最后进行紫外-可见吸收光谱分析获得样品光吸收特性。 对西安市水溶性棕碳 (BrC) 和甲醇溶性 BrC 在 365 nm 下冬季和夏季的吸光贡献分析发现, 冬、夏两个季节甲醇提 取的有机组分光吸收效率均高于水提取的, 甲醇溶性有机碳质量吸收效率 [MAE(MSOC)] 年均值 [(1.60±0.67) m2·g−1] 是水溶性有机碳质量吸收效率 [MAE(WSOC)] 年均值 [(0.90±0.47) m2·g−1] 的 1.17 倍, 表明有机溶剂萃取组分中含有 更多的吸光能力更强的物质。冬季的 MAE(WSOC) 为 (2.05±0.86) m2·g−1, MAE(MSOC) 为 (1.53±0.36) m2·g−1; 夏季的 MAE(WSOC) 为 (1.06±0.24) m2·g−1, MAE(MSOC) 为 (0.51±0.17) m2·g−1。冬季的 MAE 值总体高于夏季的, 且冬季的 WSOC 的 E250/E265 值 (5.25) 相对低于夏季 (5.58), 可能因冬季燃煤取暖排放导致。对 BrC 中的水溶性有机碳与气象 六要素浓度进行了线性拟合, 结果显示 WSOC 与 PM2:5 (R2 = 0.6417) 和 PM10 (R2 = 0.4035) 有一定的相关性, 但与 O3 (R2 = 0.0682) 没有显示出明显的相关性, 表明其二次光化学反应的来源占比很小。
中图分类号:
朱 鑫, 陈庆彩∗, 王擎雯, 李锦雯, 程静雯, 郎涵睿, 王茂颖. 西安市大气颗粒物中棕碳的吸光性研究[J]. 大气与环境光学学报, 2022, 17(1): 125-134.
ZHU Xin, CHEN Qingcai∗, WANG Qingwen, Li Jinwen, CHENG Jingwen, LANG Hanrui, WANG Maoying. Absorbance of brown carbon in atmospheric particulate matter in Xi′an[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 125-134.
[1] | China Meteorological Administration. Ground-based Meteorological Observation Specifications [M]. Beijing: China Meteorological Press, 2003. |
中国气象局. 地面气象观测规范 [M]. 北京: 气象出版社, 2003. | |
[2] | Church J A, Clark P U, Cazenave A, et al. Climate Change 2013: The Physical Science Basis [R]. Contribution of working |
Group l to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013. | |
[3] | Dockery D W, Pope C A, Xu X, et al. An association between air pollution and mortality in six US cities [J]. The New England |
Journal of Medicine, 1993, 329(24): 1753-1759. | |
[4] | Zhang L, Wang G H, Wang J Y, et al. Chemical composition of fine particulate matter and optical properties of brown carbon |
before and during heating season in Xi′an [J]. Journal of Earth Environment, 2017, 8(5): 451-458. | |
张 璐, 王格慧, 王佳媛, 等. 西安供暖前后细颗粒物化学特征及棕碳吸光特性 [J]. 地球环境学报, 2017, 8(5): 451-458. | |
[5] | Feng Y, Ramanathan V, Kotamarthi V R. Brown carbon: A significant atmospheric absorber of solar radiation? [J]. Atmospheric |
Chemistry and Physics, 2013, 13(17): 8607-8621. | |
[6] | Lin P, Bluvshtein N, Rudich Y, et al. Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass |
burning event [J]. Environmental Science & Technology, 2017, 51(20): 11561-11570. | |
[7] | Reisinger P, Wonaschütz A, Hitzenberger R, et al. Intercomparison of measurement techniques for black or elemental carbon |
under urban background conditions in wintertime: Influence of biomass combustion [J]. Environmental Science & Technology, | |
20 | 08, 42(3): 884-889. |
[8] | Jo D S, Park R J, Lee S, et al. A global simulation of brown carbon: Implications for photochemistry and direct radiative effect |
[J] | Atmospheric Chemistry and Physics, 2016, 16(5): 3413-3432. |
[9] | Cai J, Zhi G R, Chen Y J, et al. A preliminary study on brown carbon emissions from open agricultural biomass burning and |
residential coal combustion in China [J]. Research of Environmental Sciences, 2014, 27(5): 455-461. | |
蔡 竟, 支国瑞, 陈颖军, 等. 中国秸杆焚烧及民用燃煤棕色碳排放的初步研究 [J]. 环境科学研究, 2014, 27(5): 455-461. | |
[10] | Chakrabarty R K, Moosmüller H, Chen L W A, et al. Brown carbon in tar balls from smoldering biomass combustion [J]. |
Atmospheric Chemistry and Physics, 2010, 10(13): 6363-6370. | |
[11] | Hecobian A, Zhang X, Zheng M, et al. Water-soluble organic aerosol material and the light-absorption characteristics of |
aqueous extracts measured over the Southeastern United States [J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5965- | |
5977. | |
[12] | Shapiro E L, Szprengiel J, Sareen N, et al. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol |
mimics [J]. Atmospheric Chemistry and Physics, 2009, 9(7): 2289-2300. | |
[13] | Bones D L, Henricksen D K, Mang S A, et al. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales [J]. Journal of Geophysical Research: Atmospheres, |
20 | 10, 115(D5): D05203. |
[14] | Apicella B, Alfe M, Barbella R, ` et al. Aromatic structures of carbonaceous materials and soot inferred by spectroscopic analysis |
[J] | Carbon, 2004, 42(8/9): 1583-1589. |
[15] | Ding X, Zheng M, Yu L P, et al. Spatial and seasonal variations of isoprene secondary organic aerosol from terpenoids over |
China [J]. Environmental science & technology, 2008, 42(14): 5171-5176. | |
[16] | Cheng Y, He K B, Zheng M, et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, |
China [J]. Atmospheric Chemistry and Physics, 2011, 11(22): 11497-11510. | |
[17] | Liu J, Bergin M, Guo H, et al. Size-resolved measurements of brown carbon in water and methanol extracts and estimates |
of their contribution to ambient fine-particle light absorption [J]. Atmospheric Chemistry and Physics, 2013, 13(24): 12389- | |
12 | 404. |
[18] | Zhang X L, Lin Y H, Surratt J D, et al. Sources, composition and absorption Ångstrom exponent of light-absorbing organic ¨ |
components in aerosol extracts from the los angeles basin [J]. Environmental Science & Technology, 2013, 47(8): 3685-3693. | |
[19] | Washenfelder R A, Attwood A R, Brock C A, et al. Biomass burning dominates brown carbon absorption in the rural southeastern United States [J]. Geophysical Research Letters, 2015, 42(2): 653-664. |
[20] | Yuan J F, Huang X F, Cao L M, et al. Light absorption of brown carbon aerosol in the PRD region of China [J]. Atmospheric |
Chemistry and Physics, 2016, 16(3): 1433-1443. | |
[21] | Ni X C R, Ren P, A Q, et al. Study on the spatiotemporal distribution characteristics of ground level ozone concentration in |
Lhasa [J]. Plateau Science Research, 2019, 3(4): 58-65. | |
尼霞次仁, 任 培, 阿琼, 等. 拉萨市臭氧浓度时空分布变化特征分析 [J]. 高原科学研究, 2019, 3(4): 58-65. | |
[22] | Cao X H. Trend analysis of sulfur dioxide and nitrogen dioxide in ambient air during the twelfth five-year plan period in Erdos |
City [J]. Environment and Development, 2019, 31(1): 160. | |
曹星辉. 鄂尔多斯市“十二五”期间环境空气中二氧化硫、二氧化氮变化趋势分析 [J]. 环境与发展, 2019, 31(1): 160. | |
[23] | Du Z Y. Research on the Sources and Optical Properties of Water-soluble Organic Carbon in Beijing [D]. Beijing: Tsinghua |
University, 2014. | |
杜祯宇. 北京市水溶性有机碳来源与光吸收特征研究 [D]. 北京: 清华大学, 2014. | |
[24] | Desyaterik Y, Sun Y L, Shen X H, et al. Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning |
in Eastern China [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(13): 7389-7399. | |
[25] | Talbot R W, Andreae M O, Andreae T W, et al. Regional aerosol chemistry of the Amazon Basin during the dry season [J]. |
Journal of Geophysical Research: Atmospheres, 1988, 93(D2): 1499-1508. | |
[26] | Liu J, Bergin M, Guo H, et al. Size-resolved measurements of brown carbon in water and methanol extracts and estimates |
of their contribution to ambient fine-particle light absorption [J]. Atmospheric Chemistry and Physics, 2013, 13(24): 12389- | |
12 | 404. |
[27] | Chen Y F, Ge X L, Chen H, et al. Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine |
particles in Nanjing, China [J]. Atmospheric Environment, 2018, 187: 230-240. | |
[28] | Cheng Y, He K B, Du Z Y, et al. The characteristics of brown carbon aerosol during winter in Beijing [J]. Atmospheric |
Environment, 2016, 127: 355-364. | |
[29] | Zhao Y, Wu C, Wang Y Q, et al. Pollution characteristics and sources of wintertime atmospheric brown carbon at a background |
site of the Yangtze River Delta region in China [J]. Environmental Science, 2021, 42(7): 3127-3135. | |
赵 宇, 吴 灿, 王益倩, 等. 中国长三角背景点冬季大气棕碳污染特征及来源解析 [J]. 环境科学, 2021, 42(7): 3127-3135. | |
[30] | Soleimanian E, Mousavi A, Taghvaee S, et al. Impact of secondary and primary particulate matter (PM) sources on the |
enhanced light absorption by brown carbon (BrC) particles in central Los Angeles [J]. Science of the Total Environment, 2020, | |
70 | 5: 135902. |
[31] | Du Z Y, He K B, Cheng Y, et al. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties |
[J] | Atmospheric Environment, 2014, 89: 235-241. |
[32] | Tan J H, Duan J C, Zhao J P, et al. The size distribution of organic carbon and elemental carbon during haze period in |
Guangzhou [J]. Environmental Chemistry, 2009, 28(2): 267-271. | |
谭吉华, 段菁春, 赵金平, 等. 广州市灰霾期间大气颗粒物中有机碳和元素碳的粒径分布 [J]. 环境化学, 2009, 28(2): | |
26 | 7-271. |
[33] | Qiao T, Zhao M F, Xiu G L, et al. Seasonal variations of water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its |
implications on haze pollution in urban Shanghai, China [J]. Atmospheric Environment, 2015, 123: 306-314. | |
[34] | Fan X J, Yu X F, Cao T, et al. Light absorption and fluorescence characteristics of atmospheric water-soluble organic compounds and humic-like substances during the winter season in Guangzhou [J]. Environmental Science, 2019, 40(2): 532-539. |
范行军, 余旭芳, 操 涛, 等. 广州冬季气溶胶中水溶性有机物和类腐殖质的吸光性和荧光光谱特性 [J]. 环境科学, 2019, | |
40 | (2): 532-539. |
[35] | Lei Y L, Shen Z X, Wang Q Y, et al. Optical characteristics and source apportionment of brown carbon in winter PM2:5 over |
Yulin in Northern China [J]. Atmospheric Research, 2018, 213: 27-33. |
[1] | 张苗苗, 温渊, 朱思峰, 谢艳清, 李迎杰, 李云端, 洪津, 刘振海, 骆冬根, 宋茂新, 王羿 . 高光谱观测卫星偏振交火工程设计及在轨性能评估[J]. 大气与环境光学学报, 2023, 18(4): 295-309. |
[2] | 李瑞. 成都市PM2.5、PM10变化特征及其与气象因素的关系[J]. 大气与环境光学学报, 2023, 18(1): 47-58. |
[3] | 陈海彪, 闫才青, ∗, 王新锋, 杜 林, 刘久萌, 程 远, 郑 玫. 大气棕碳气溶胶吸光特性影响因素的研究进展[J]. 大气与环境光学学报, 2022, 17(1): 45-64. |
[4] | 彭 超, 陈 阳∗, 杨复沫, 田 密, 翟崇治, . 重庆市棕碳气溶胶吸光特性及其影响因素研究[J]. 大气与环境光学学报, 2022, 17(1): 135-147. |
[5] | 朱晟男, 李铸杰, 马 嫣, 戈逸峰, 郑 军∗. 南京青奥会期间棕碳对大气颗粒物光吸收贡献研究[J]. 大气与环境光学学报, 2021, 16(6): 504-519. |
[6] | 陈岩, 王炜罡, ∗, 刘明元, 葛茂发, . 纳米颗粒物化学成分测量技术及其应用 #br#[J]. 大气与环境光学学报, 2020, 15(6): 402-412. |
[7] | 康士鹏, 余同柱, ∗, 桂华侨, ∗, 员永兴, 王焕钦, 刘建国, . 机动车排放超细颗粒物在线监测技术研究进展 #br# [J]. 大气与环境光学学报, 2020, 15(6): 413-428. |
[8] | 周纪彤, 王焕钦∗, 胡俊涛, 杨杰, 孙强, 虞发军, 桂华侨, 刘建国. 便携式机动车超细颗粒物粒径谱仪研制 #br# [J]. 大气与环境光学学报, 2020, 15(6): 448-460. |
[9] | 于素真1, 吴东1,2. CALIOP反演海洋颗粒物后向散射方法[J]. 大气与环境光学学报, 2019, 14(5): 367-373. |
[10] | 徐达1,张全1,范广强2,姚德飞1,田旭东1,王界3, 李文刚3. 基于激光雷达观测网的杭州及周边地区颗粒物污染特征研究[J]. 大气与环境光学学报, 2019, 14(3): 171-178. |
[11] | 谢焕丽,何红弟. 香港港口PM2.5和PM10的多重分形特征[J]. 大气与环境光学学报, 2019, 14(3): 179-190. |
[12] | 张连科 鲁尚发 焦坤灵 王维大 张保生 于维佳. 包头城区冬春大气颗粒物污染特征及其与气象条件关系[J]. 大气与环境光学学报, 2017, 12(6): 401-410. |
[13] | 秦玮 范广强 张天舒 吕立慧 项衍 盛世杰. 基于激光雷达和地面监测数据对南京一次沙尘和细粒子污染时空演变特征的分析[J]. 大气与环境光学学报, 2016, 11(4): 270-280. |
[14] | 陈良富 陶金花 王子峰 李莘莘 张莹 范萌 李小英 余超 邹铭敏 苏林 陶明辉. 空气质量卫星遥感监测技术进展[J]. 大气与环境光学学报, 2015, 10(2): 117-125. |
[15] | 李燕 薛锐 Michael J. Ezell Barbara J. Finlayson-Pitts. 海盐颗粒物光散射特性的理论和实验研究[J]. 大气与环境光学学报, 2014, 9(3): 215-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||