[1] |
Guo Y H, Wang Z F, Kang H, et al. Impact of automobile vehicles exhaust emissions on metropolitan air quality: analysis
|
|
study on the air pollution change before and after the Spring Festival in Urumqi City, China [J]. Acta Scientiae Circumstantiae,
|
20 |
14, 34(5): 1109-1117.
|
|
郭宇宏, 王自发, 康 宏, 等. 机动车尾气排放对城市空气质量的影响研究: 以乌鲁木齐市春节前后对比分析 [J]. 环境科
|
|
学学报, 2014, 34(5): 1109-1117.
|
[2] |
Zhang Q. Vehicle Emission Estimation Algorithms Based on Remote Sensing Data [D]. Hefei: University of Science and
|
|
Technology of China, 2019.
|
|
张 强. 基于遥感监测数据的机动车尾气排放估计算法研究 [D]. 合肥: 中国科学技术大学, 2019.
|
[3] |
He C Y, Wang Q D. Vehicle emission factors determination using CMEM in Beijing [J]. Research of Environmental Sciences,
|
20 |
06, 19(1): 109-112.
|
|
何春玉, 王歧东. 运用 CMEM 模型计算北京市机动车排放因子 [J]. 环境科学研究, 2006, 19(1): 109-112.
|
[4] |
Yu K, Dong H Z, Li J W, et al. Research on prediction of vehicle exhaust based on measurement by PEMS [J]. Computer
|
|
Measurement & Control, 2016, 24(9): 58-60.
|
|
于 坤, 董红召, 李家文, 等. 基于 PEMS 测量的机动车尾气预测研究 [J]. 计算机测量与控制, 2016, 24(9): 58-60.
|
[5] |
Hao L J, Chen W, Li L, et al. Modeling and predicting low-speed vehicle emissions as a function of driving kinematics [J].
|
|
Journal of Environmental Sciences, 2017, 55: 109-117.
|
[6] |
Wang Z H, Qin K, Yin D D, et al. Prediction of heavy duty diesel vehicle emission based on GA-BP neural network with
|
|
double hidden layer [J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(6): 735-740.
|
|
王志红, 秦 可, 尹冬冬, 等. 基于双隐含层 GA-BP 神经网络的重型柴油车排放预测 [J]. 合肥工业大学学报 (自然科学
|
版) |
, 2019, 42(6): 735-740.
|
[7] |
Zuo F S, Li Z Y, Lv X, et al. Prediction of gasoline engine exhaust emission based on BP neural network [J]. Journal of Jiangsu
|
|
University (Natural Science Edition), 2020, 41(3): 307-313.
|
|
左付山, 李政原, 吕 晓, 等. 基于 BP 神经网络的汽油机尾气排放预测 [J]. 江苏大学学报 (自然科学版), 2020, 41(3):
|
30 |
7-313.
|
[8] |
Li C Q, Xie X P. Emission prediction of large buses based on portable emission mesurement systems and BP neural network
|
[J] |
Automobile Technology, 2021, (1): 57-62.
|
|
李昌庆, 谢小平. 基于便携式排放测试系统与 BP 神经网络的大型客车排放预测 [J]. 汽车技术, 2021, (1): 57-62.
|
[9] |
Xu Z Y, Wang R J, Zhang C, et al. Automatic identification of high-emitting vehicle based on deep feature clustering [J].
|
|
Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 298-309.
|
|
许镇义, 王仁军, 张 聪, 等. 基于深度特征聚类的高排放移动污染源自动识别 [J]. 交通运输系统工程与信息, 2021, 21(6):
|
29 |
8-309.
|
[10] |
Xu Z Y. Research on Comprehensive Supervision of Urban Mobile Source Emissions Based on Spatiotemporal Data Mining
|
[D] |
Hefei: University of Science and Technology of China, 2020.
|
|
许镇义. 基于时空数据挖掘的城市移动源污染综合监管问题研究 [D]. 合肥: 中国科学技术大学, 2020.
|
[11] |
Zhang X C, Qiu J D, Qu X M, et al. Characteristics and influencing factors of traffic pollutant emission concentration in
|
|
Shenzhen City [J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(2): 178-186.
|
|
张晓春, 丘建栋, 屈新明, 等. 深圳市交通排放污染物浓度特征与影响因素 [J]. 深圳大学学报 (理工版), 2020, 37(2):
|
17 |
8-186.
|
[12] |
Lu Y J, Ni S Y, Wang H H, et al. Estimation of vehicle emission based on traffic flow on national and provincial roads in Hebei
|
|
Province [J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4483-4491.
|
|
陆雅静, 倪爽英, 王洪华, 等. 河北省国道和省道机动车基于交通流量的尾气排放量估算 [J]. 环境科学学报, 2020,
|
40 |
(12): 4483-4491.
|
[13] |
Robert T. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
|
[14] |
Shen S Y. Variable Selection of Complex Data Joint Model Based on Improved Lasso Method [D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
|
沈曙昀. 基于 Lasso 改进方法的复杂数据联合模型变量选择 [D]. 武汉: 华中科技大学, 2019.
|
[15] |
Zhang X L. Research on Influence Factors of Taxi Emission Factors Based on Random Forest Regression [D]. Shenyang:
|
|
Liaoning University, 2020.
|
|
张馨露. 基于随机森林回归的出租车排放因子影响因素研究 [D]. 沈阳: 辽宁大学, 2020.
|
[16] |
Xu Z Y, Kang Y, Lv W J. Analysis and prediction of vehicle exhaust emission using ANN [C]. 2017 36th Chinese Control
|
|
Conference (CCC), July 26-28, 2017, Dalian, China. IEEE, 2017: 4029-4033.
|
[17] |
Wang J J, Xu Z B. Approximation method of multivariate polynomials by feedforward neural networks [J]. Chinese Journal of
|
|
Computers, 2009, 32(12): 2482-2488.
|
|
王建军, 徐宗本. 多元多项式函数的三层前向神经网络逼近方法 [J]. 计算机学报, 2009, 32(12): 2482-2488.
|
[18] |
Wang Q, Yu Y F, Zhang H J. Function approximation using artificial nueral networks [J]. Computer Simulation, 2002, 19(5):
|
44 |
-47.
|
|
王 强, 余岳峰, 张浩炯. 利用人工神经网络实现函数逼近 [J]. 计算机仿真, 2002, 19(5): 44-47.
|
[19] |
Li J. Apparel Inventory Control and Neural Network Forecast Algorithm Research [D]. Wuxi: Jiangnan University, 2009.
|
|
李 娟. 服装库存控制及神经网络预测算法研究 [D]. 无锡: 江南大学, 2009.
|
[20] |
Yao Y, Rosasco L, Caponnetto A. On early stopping in gradient descent learning [J]. Constructive Approximation, 2007, 26(2):
|
28 |
9-315.
|