大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (2): 220-229.

• 环境光学监测技术 • 上一篇    下一篇

移动源排放遥测主要影响因素分析及预测

许镇义1;2, 王瑞宾1;3, 康 宇1;2;4;5∗, 曹 洋2, 张 聪6, 王仁军1;3   

  1. 1合肥综合性国家科学中心人工智能研究院, 安徽 合肥 230088; 2 中国科学技术大学自动化系, 安徽 合肥 230036; 3 安徽大学计算机科学与技术学院, 安徽 合肥 230601; 4 中国科学技术大学先进技术研究院, 安徽 合肥 230088; 5 中国科学技术大学火灾科学国家重点实验室, 安徽 合肥 230027; 6 合肥市生态环境局, 安徽 合肥 230601
  • 收稿日期:2020-12-29 修回日期:2022-02-23 出版日期:2022-03-28 发布日期:2022-03-28
  • 通讯作者: E-mail: kangduyu@ustc.edu.cn E-mail:kangduyu@ustc.edu.cn
  • 作者简介:许镇义 (1993 - ), 江苏宿迁人, 博士, 特任副研究员, 主要从事移动源污染监测、城市计算、时空数据挖掘方面的研究。 E-mail: xuzhenyi@mail.ustc.edu.cn
  • 基金资助:
    Supported by Major Science and Technology Project of Anhui Province (安徽省科技重大专项, 201903a07020012, 202003a07020009), National Natural Science Foundation of China (国家自然科学基金, 62033012, 61725304, 61673361, 62103124), National Key Research and Development Project of China (国家重点研发计划项目, 2018YFE0106800, 2018YFC0213104), Fundamental Research Funds for the Central Universities (中央高校基本科 研业务费专项资金, WK2100000013, WK2380000001), Special Fund for Transformation of Scientific and Technological Achievements of Smart City Research Institute (Wuhu) of University of Science and Technology of China (中国科学技术大学智慧城市研究院 (芜湖) 科技成果转化专项资金, 2019ZX04)

Analysis and prediction of main influencing factors in mobile source remote sensing

XU Zhenyi1;2, WANG Ruibin1;3, KANG Yu1;2;4;5∗, CAO Yang2, ZHANG Cong6, WANG Renjun1;3   

  1. 1 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; 2 Department of Automation, University of Science and Technology of China, Hefei 230036, China; 3 School of Computer Science and Technology, Anhui University, Hefei 230601, China; 4 Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China; 5 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China; 6 Hefei Municipal Environmental Protection Bureau, Hefei 230601, China
  • Received:2020-12-29 Revised:2022-02-23 Published:2022-03-28 Online:2022-03-28
  • Contact: Yu Kang E-mail:kangduyu@ustc.edu.cn

摘要: 由于移动源污染遥感监测受到复杂外部环境影响, 难以通过传统统计方法建立车辆行驶工况与污染排放之间 的相关性模型, 为此开展了基于移动源遥感监测的影响因素分析及排放预测的研究。首先利用 Spearman 相关性分析 排除与移动源污染物主要排放气体 CO、 HC、 NO 气体浓度无相关性的因素; 其次使用 Lasso 算法确定各成分的关键 影响因子, 并采用神经网络构建污染物排放预测模型; 最后在测试集上验证该模型用于移动源污染排放主要成分预测 的有效性。模型预测的结果表明, 基于特征筛选的移动源污染排放数据预测神经网络模型具有较高的预测精度, 可以 降低城市移动源污染排放检测成本并为相关部门制定相关政策提供数据支持。

关键词: 移动源污染, 遥感监测, 排放预测, 特征筛选, 神经网络

Abstract: As remote sensing monitoring of mobile source exhaust can be affected by the complex external environment, it is difficult to establish a correaltion model between vehicle driving conditions and pollution emissions through traditional statistical methods. For this reason, the research on the analysis of influencing factors and emission prediction based on remote sensing monitoring of mobile sources is carried out. Firstly, Spearman correlation is used to exclude the factors that have no correlation with CO, HC and NO, the main components in emission of mobile source pollution. Secondly, Lasso algorithm is used to choose the principal influencing factors. And after principal components analysis and the selection of algorithm and architecture, the Back-Propagation (BP) neural network model is established as the optimal algorithm. Finally, the validity of the model for predicting the main components of emission of mobile source pollution is verified on the test set. The results of model prediction show that the prediction models based on feature selection and BP has high prediction accuracy, which can reduce the cost of mobile source pollution emission detection and provide theoretical basis for policy making.

Key words: mobile source emission, exhaust remote sensing, emission prediction, feature selection, neural network

中图分类号: