大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (2): 230-240.

• 环境光学监测技术 • 上一篇    下一篇

基于粒子群算法的BP 神经网络在大气 NO2 浓度预测中的应用研究

郭映映, 齐贺香, 李素文∗, 牟福生∗   

  1. 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
  • 收稿日期:2020-10-16 修回日期:2022-01-14 出版日期:2022-03-28 发布日期:2022-03-28
  • 通讯作者: E-mail: swli@chnu.edu.cn;E-mail: fsmou@aiofm.ac.cn E-mail:swli@chnu.edu.cn
  • 作者简介:郭映映 (1994 - ), 女, 安徽马鞍山人, 硕士研究生, 主要从事差分吸收光谱技术方法与应用方面的研究。 E-mail: yingyingguo2019@outlook.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 41875040, 41705012), Top-Notch Talent Support Program of Higher Learning Institutions of Anhui (安徽省高校学科拔尖人才项目, gxbjZD2020067)

Application of BP neural network based on particle swarm optimization in atmospheric NO2 concentration prediction

GUO Yingying, QI Hexiang, LI Suwen∗, MOU Fusheng∗   

  1. College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 China
  • Received:2020-10-16 Revised:2022-01-14 Published:2022-03-28 Online:2022-03-28
  • Contact: Li SuWen E-mail:swli@chnu.edu.cn

摘要: NO2 是主要的大气污染气体之一, 在大气光化学过程中起着重要作用。研究 NO2 浓度的时空演变, 预测其浓 度变化趋势, 对政府出台改善环境措施具有重要意义。提出利用粒子群算法 (PSO) 的反向传播 (BP) 神经网络对大气 NO2 浓度进行预测。以合肥地区 2017 年 1 月 1 日至 2019 年 12 月 31 日的大气污染数据和气象数据为基础, 结合逐步 回归方法筛选出与 NO2 浓度相关性较大的影响因子作为输入样本。构建 PSO-BP 神经网络预测模型, 利用 PSO 找出 BP 神经网络最优的初始权值和阈值。对比 BP 神经网络、遗传算法改进的 BP 神经网络和 PSO 改进的 BP 神经网络 三种模型的预测结果, 发现 PSO-BP 模型能够较为准确地预测出 NO2 浓度的动态变化规律, 并且预测精度高、模式简 单, 有望广泛应用于大气污染物浓度预测等方面的研究。

关键词: 粒子群算法, 反向传播神经网络, 逐步回归, NO2 浓度预测

Abstract: NO2 is one of the main atmospheric pollutants, which plays an important role in atmospheric photochemical process. It is of great significance to study the temporal and spatial variation law of NO2 concentration and predict the variation trend of NO2 concentration. The BP neural network based on particle swarm optimization (PSO) was proposed to predict atmospheric NO2 concentration. Based on the air pollution data and meteorological data of Hefei area, China, from January 1, 2017 to December 31, 2019 and combined with the stepwise regression method, the influencing factors with high correlation with NO2 concentration were selected as the input samples. The PSO-BP neural network prediction model was constructed, and then the optimal solution of the initial weight and threshold value of the BP neural network were found by using PSO algorithm. By comparing the prediction results of the traditional BP neural network, BP neural network improved by genetic algorithm and BP neural network improved by PSO, it was found that PSO-BP model can accurately predict the dynamic change of NO2 concentration with high prediction accuracy and simple model, which is expected to be widely used in air pollutant concentration prediction in the future.

Key words: particle swarm optimization, back propagation neural network, stepwise regression, NO2 concentration prediction

中图分类号: