大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (2): 258-266.

• 环境光学监测技术 • 上一篇    下一篇

荧光寿命衰减曲线结合支持向量机的油种识别

景 敏∗, 陈曼龙, 丁 敏, 张 琦, 杨 帆, 马祯元   

  1. 陕西理工大学机械工程学院, 陕西 汉中, 723001
  • 收稿日期:2020-12-17 修回日期:2022-02-21 出版日期:2022-03-28 发布日期:2022-03-28
  • 通讯作者: E-mail: jingmin@snut.edu.cn E-mail:jingmin@snut.edu.cn
  • 作者简介:景 敏 (1978 - ), 女, 陕西汉中人, 博士, 副教授, 硕士生导师, 主要从事激光诱导荧光检测、机器视觉检测等方面的研究。 E-mail: jingmin@snut.edu.cn
  • 基金资助:
    Supported by Natural Science Foundation of Shaanxi Provincial Department of Education (陕西省教育厅科学研究项目, 18JK0163), Natural Science Foundation of Shaanxi Provincial Department of Science and Technology (陕西省科技厅科学研究项目, 2019JM-171, 2022JM-383), Natural Science Foundation of Shaanxi University of Technology (陕西理工大学科学研究项目, SLGRCQD2103)

Oil recognition based on fluorescence-lifetime decay curve combined with support vector machine

JING Min∗, CHEN Manlong, DING Min, ZHANG Qi, YANG Fan, MA Zhenyuan   

  1. School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
  • Received:2020-12-17 Revised:2022-02-21 Published:2022-03-28 Online:2022-03-28
  • Contact: Min JING E-mail:jingmin@snut.edu.cn

摘要: 作为一种重要检测手段, 主动荧光探测利用荧光寿命参数作为荧光探测的特征参数, 可以解决荧光强度易受 外界环境因素影响的问题。基于门控探测法测量荧光寿命的原理, 利用荧光寿命衰减曲线结合非线性最小二乘回归 拟合荧光寿命衰减函数来提取荧光平均寿命参数, 利用荧光寿命图谱绘制荧光物质的二维空间分布, 进而提出并实验 验证了结合支持向量机利用荧光寿命参数作为特征向量进行油种识别的方法。实验结果表明, 利用荧光平均寿命作 为参数, 激发区域中像素点荧光寿命值落入各自置信区间内的概率为 68% 以上, 结合支持向量机进行油种识别, 识别 概率在 77% 以上。利用荧光寿命参数进行油种识别具有可行性且具有良好的识别率, 同时结合支持向量机的识别方 法所需训练样本少, 因此利用荧光寿命衰减曲线结合支持向量机的油种识别方法有望为环境污染领域油种识别研究 提供另一种参考。

关键词: 主动荧光探测, 荧光寿命, 门控探测法, 支持向量机

Abstract: As an important detection method, active fluorescence detection uses fluorescence lifetime as the characteristic parameter of fluorescence detection, which can solve the problem that the fluorescence intensity is easily affected by external environmental factors to a certain extent. Based on the principle of the gated-detection method for measuring fluorescence life, the nonlinear least square regress combined with fluorescence lifetime decay curve is used to fit the fluorescence lifetime decay function to extract the average fluorescence lifetime parameters, and the two-dimensional spatial distribution of fluorescence substances is drawn from the fluorescence life map. Furthermore, a method of oil types recognition using fluorescence lifetime parameter as feature vector is proposed and experimentally verified. The experimental results show that the probability of the pixel point fluorescence lifetime falling into the confidence interval in the excitation region is more than 68% by using the fluorescence average life as a parameter, and the recognition probability is over 77% by using the support vector machine for oil types recognition. It seems that it is feasible and has a good recognition rate to identify oil species by using fluorescence lifetime parameter, and at the same time, less training samples are required for the method combined with support vector machine. Therefore, the oil recognition method based on fluorescence lifetime decay curve combined with support vector machine will provide another reference for oil types recognition research in the field of environmental pollution.

Key words: active fluorescence detection, fluorescence lifetime, time-gated detection, support vector machine

中图分类号: