[1] |
Wu D, Hu Y X, Mccormick M P, et al. Global cloud-layer distribution statistics from 1 year CALIPSO lidar observations [J].
|
|
International Journal of Remote Sensing, 2011, 32(5): 1269-1288.
|
[2] |
Zhao J C, Wu D, Zhao Y T. A method for sea fog detection using CALIOP data [J]. Periodical of Ocean University of China,
|
20 |
17, 47(12): 9-15.
|
|
赵经聪, 吴 东, 赵耀天. 基于 CALIOP 数据的海雾检测方法研究 [J]. 中国海洋大学学报 (自然科学版), 2017, 47(12):
|
|
9-15.
|
[3] |
Gu Y, Li P, Liu J, et al. Analysis on engineering geological survey of Arctic submarine cable routing [J]. Ocean Development
|
|
and Management, 2020, 37(1): 10-14.
|
|
顾 洋, 李 萍, 刘 杰, 等. 北极海缆路由工程地质勘察问题探析 [J]. 海洋开发与管理. 2020, 37(1): 10-14.
|
[4] |
Ellrod G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery [J]. Weather and
|
|
Forecasting, 1995, 10(3): 606-619.
|
[5] |
Koracin D, Dorman C E, Lewis J M, ˘ et al. Marine fog: A review [J]. Atmospheric Research, 2014, 143: 142-175.
|
[6] |
Lee T F, Turk F J, Richardson K. Stratus and fog products using GOES-8-9 3.9 µm data [J]. Weather and Forecasting, 1997,
|
12 |
(3): 664-677.
|
[7] |
Zhang S P, Yi L. A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas
|
[J] |
Pure and Applied Geophysics, 2013, 170(11): 1931-1944.
|
[8] |
Yi L, Li K F, Chen X Y, et al. Arctic fog detection using infrared spectral measurements [J]. Journal of Atmospheric and
|
|
Oceanic Technology, 2019, 36(8): 1643-1656.
|
[9] |
Wang Z, Teng J, Cai W, et al. Yellow sea fog extraction method based on GOCI image [J]. Marine Environmental Science,
|
20 |
18, 37(6): 941-946.
|
|
王 峥, 滕骏华, 蔡文博, 等. 基于 GOCI 影像的黄海海雾提取方法研究 [J]. 海洋环境科学, 2018, 37(6): 941-946.
|
[10] |
Heo K Y, Park S, Ha K. J, et al. Algorithm for sea fog monitoring with the use of information technologies [J]. Meteorological
|
|
Applications, 2014, 2(21): 350-359.
|
[11] |
Lee J, Chung C, Ou M. Fog detection using geostationary satellite data: Temporally continuous algorithm [J]. Asia-Pacific
|
|
Journal of Atmospheric Sciences, 2011, 47(2): 113-122.
|
[12] |
Yi L, Thies B, Zhang S P, et al. Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime
|
|
data as a prerequisite for Yellow Sea fog detection [J]. Remote Sensing, 2016, 8(1): 8.
|
[13] |
Yi L, Zhang S P, Thies B, et al. Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with
|
|
geostationary satellite data as a precondition for ground fog detection—A feasibility study [J]. Atmospheric Research, 2015,
|
15 |
1: 212-223.
|
[14] |
Bendix J, Thies B, Cermak J, et al. Ground fog detection from space based on MODIS daytime data-A feasibility study [J].
|
|
Weather and Forecasting, 2005, 20(6): 989-1005.
|
[15] |
Marchand R, Ackerman T, Smyth M, et al. A review of cloud top height and optical depth histograms from MISR, ISCCP, and
|
|
MODIS [J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D16): D16206.
|
[16] |
Weisz E, Li J, Menzel W P, et al. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals [J].
|
|
Geophysical Research Letters, 2007, 34(17) : L17811.
|
[17] |
Gultepe I, Pagowski M, Reid J. A satellite-based fog detection scheme using screen air temperature [J]. Weather and Forecasting, 2007, 22(3): 444-456.
|
[18] |
Hakansson N, Adok C, Thoss A, et al. Neural network cloud top pressure and height for MODIS [J]. Atmospheric Measurement Techniques, 2018, 11(5): 3177-3196.
|
[19] |
Kox S, Bugliaro L, Ostler A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing [J].
|
|
Atmospheric Measurement Techniques, 2014, 7(10): 3233-3246.
|
[20] |
Meng H, Yang Z, Guo H T. Research and analysis on cloud top height Inversion technology based on neural network [J].
|
|
Journal of Jinling Institute of Technology, 2019, 35(2): 34-39.278 大 气 与 环 境 光 学 学 报 17 卷
|
|
孟 恒, 杨 忠, 郭洪涛. 基于神经网络的云顶高反演技术研究分析 [J]. 金陵科技学院学报, 2019, 35(2): 34-39.
|
[21] |
Daegeun S, Kim J H. A new application of unsupervised learning to nighttime sea fog detection [J]. Asia-Pacific Journal of
|
|
Atmospheric Sciences, 2018, 54(4): 527-544.
|
[22] |
Zhu C Y, Wang J H, Liu S W, et al. Sea fog detection using U-Net deep learning model based on MODIS data [J]. 2019 10th
|
|
Workshop On Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, 2019: 1-5.
|
[23] |
Liu S, Yi L, Zhang S, P, et al. A study of daytime sea fog retrieval over the Yellow Sea based on fully convolutional networks
|
[J] |
Transactions of Oceanology and Limnology, 2019, 6: 13-22.
|
|
刘树霄, 衣 立, 张苏平, 等. 基于全卷积神经网络方法的日间黄海海雾卫星反演研究 [J]. 海洋湖沼通报, 2019, 6: 13-22.
|
[24] |
Mcgill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar [J].
|
|
Journal of Geophysical Research-Atmospheres, 2007, 112(D20): D20201.
|
[25] |
Liu Z. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data [J].
|
|
Journal of Geophysical Research, 2004, 109(D15): D15202.
|
[26] |
Wu D, Lu B, Zhang T C, et al. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based
|
|
sea fog detection [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153: 88-94.
|
[27] |
Wei S X. Application of CALIOP in MODIS Based Sea Fog Detection Abstract [D]. Qingdao: Ocean University of China,
|
|
2013.
|
|
魏书晓. 星载激光雷达在基于 MODIS 海雾检测中的应用 [D]. 青岛: 中国海洋大学, 2013.
|
[28] |
Zhang P, Wu D. Daytime sea fog detection method using Himawari-8 data [J]. Journal of Atmospheric and Environmental
|
|
Optics, 2019, 14(3): 211-220.
|
|
张 培, 吴 东. 基于 Himawari-8 数据的日间海雾检测方法 [J]. 大气与环境光学学报, 2019, 14(3): 211-220.
|
[29] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [J]. IEEE Conference on Computer Vision
|
|
and Pattern Recognition, 2016: 770-778.
|
[30] |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]. In
|
|
Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015: 448-456.
|