大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (5): 542-549.

• 环境光学监测技术 • 上一篇    下一篇

弱信号亮温光谱的污染气体快速识别算法

汪嘉林, 熊 伟, 李大成∗ , 吴 军   

  1. 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征重点实验室, 安徽 合肥 230031
  • 收稿日期:2021-01-12 修回日期:2022-07-26 出版日期:2022-09-28 发布日期:2022-10-17
  • 通讯作者: E-mail: dcli@aiofm.ac.cn E-mail:dcli@aiofm.ac.cn
  • 作者简介:汪嘉林 (1995 - ), 安徽黄山人, 硕士, 助理研究员, 主要从事大气气体反演方面的研究。 E-mail: 15256021609@163.com
  • 基金资助:
    Supported by National Natural Science Foundation of China Youth Science Foundation Project (国家自然科学基金青年科学基金项目, 41505020)

Fast identification algorithm of pollution gas by brightness temperature spectrum of weak signal

WANG Jialin, XIONG Wei, LI Dacheng ∗ , WU Jun   

  1. Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2021-01-12 Revised:2022-07-26 Published:2022-09-28 Online:2022-10-17
  • Contact: Cheng DaLI E-mail:dcli@aiofm.ac.cn

摘要: 基于被动傅里叶变换红外光谱仪设计开发了一种新的快速气体识别算法, 利用改进的动量梯度下降法对实测 的亮温光谱进行快速的光谱拟合。该方法不需要预先测得背景光谱, 能直接从实测光谱中扣除大气气体和天空等背 景的干扰, 在提取出污染气体成分以及浓度的同时, 能实时得到大气中主要气体的浓度程长积, 此方法适用于低空背 景下弱信号的污染气体识别分析。

关键词: 红外光谱仪, 遥感探测, 大气污染, 气体识别

Abstract: A new fast gas recognition algorithm was developed based on passive Fourier transform infrared spectrometer, and then the improved momentum gradient descent method was used to realize the fast fitting the measured brightness temperature spectra. This method does not need to measure the background spectrum in advance, and can directly subtract the background interference of atmospheric gas and sky from the measured spectrum. Besides extracting the composition and concentration of the pollutant gas, it can also obtain the concentration-path-length of the main gases in the atmosphere in real time. This method is suitable for the identification and analysis of the pollutant gas with weak signals in the low altitude background.

Key words: infrared spectrometer, remote sensing detection, atmospheric pollution, gas recognition

中图分类号: